我想删除此数据框中的行:
a)在所有列中包含NA
。以下是我的示例数据框。
gene hsap mmul mmus rnor cfam
1 ENSG00000208234 0 NA NA NA NA
2 ENSG00000199674 0 2 2 2 2
3 ENSG00000221622 0 NA NA NA NA
4 ENSG00000207604 0 NA NA 1 2
5 ENSG00000207431 0 NA NA NA NA
6 ENSG00000221312 0 1 2 3 2
基本上,我想获得如下数据框。
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
6 ENSG00000221312 0 1 2 3 2
b)仅在某些列中包含NA
,因此我也可以获得此结果:
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
4 ENSG00000207604 0 NA NA 1 2
6 ENSG00000221312 0 1 2 3 2
答案 0 :(得分:951)
同时检查complete.cases
:
> final[complete.cases(final), ]
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
6 ENSG00000221312 0 1 2 3 2
na.omit
可以更好地删除所有NA
。 complete.cases
允许通过仅包含数据框的某些列来进行部分选择:
> final[complete.cases(final[ , 5:6]),]
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
4 ENSG00000207604 0 NA NA 1 2
6 ENSG00000221312 0 1 2 3 2
您的解决方案无效。如果您坚持使用is.na
,那么您必须执行以下操作:
> final[rowSums(is.na(final[ , 5:6])) == 0, ]
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
4 ENSG00000207604 0 NA NA 1 2
6 ENSG00000221312 0 1 2 3 2
但使用complete.cases
要清晰得多,速度要快得多。
答案 1 :(得分:228)
试试na.omit(your.data.frame)
。至于第二个问题,请尝试将其作为另一个问题发布(为清楚起见)。
答案 2 :(得分:83)
我更喜欢按照以下方式检查行是否包含任何NA:
row.has.na <- apply(final, 1, function(x){any(is.na(x))})
返回逻辑向量,其值表示行中是否存在任何NA。您可以使用它来查看要删除的行数:
sum(row.has.na)
并最终放弃他们
final.filtered <- final[!row.has.na,]
为了过滤具有某些NA的行,它变得有点棘手(例如,你可以将'final [,5:6]'提供给'apply')。 一般来说,Joris Meys的解决方案似乎更优雅。
答案 3 :(得分:80)
tidyr
有一个新功能drop_na
:
library(tidyr)
df %>% drop_na()
# gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674 0 2 2 2 2
# 6 ENSG00000221312 0 1 2 3 2
df %>% drop_na(rnor, cfam)
# gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674 0 2 2 2 2
# 4 ENSG00000207604 0 NA NA 1 2
# 6 ENSG00000221312 0 1 2 3 2
答案 4 :(得分:40)
如果您希望更好地控制行被视为无效的另一个选项是
final <- final[!(is.na(final$rnor)) | !(is.na(rawdata$cfam)),]
使用上面的内容,这个:
gene hsap mmul mmus rnor cfam
1 ENSG00000208234 0 NA NA NA 2
2 ENSG00000199674 0 2 2 2 2
3 ENSG00000221622 0 NA NA 2 NA
4 ENSG00000207604 0 NA NA 1 2
5 ENSG00000207431 0 NA NA NA NA
6 ENSG00000221312 0 1 2 3 2
变为:
gene hsap mmul mmus rnor cfam
1 ENSG00000208234 0 NA NA NA 2
2 ENSG00000199674 0 2 2 2 2
3 ENSG00000221622 0 NA NA 2 NA
4 ENSG00000207604 0 NA NA 1 2
6 ENSG00000221312 0 1 2 3 2
...仅删除第5行,因为它是唯一包含rnor
和cfam
的NA的行。然后可以更改布尔逻辑以满足特定要求。
答案 5 :(得分:35)
如果您想控制每行有效的NA数,请尝试此功能。对于许多调查数据集,太多空白问题响应可能会破坏结果。所以在一定的阈值后删除它们。此功能允许您选择在删除行之前可以拥有多少个NAs:
delete.na <- function(DF, n=0) {
DF[rowSums(is.na(DF)) <= n,]
}
默认情况下,它将消除所有NAs:
delete.na(final)
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
6 ENSG00000221312 0 1 2 3 2
或指定允许的最大NA数:
delete.na(final, 2)
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
4 ENSG00000207604 0 NA NA 1 2
6 ENSG00000221312 0 1 2 3 2
答案 6 :(得分:27)
data.table
和na.omit()
与可选参数cols=
。 na.omit.data.table
是我的基准测试中最快的(见下文),无论是所有列还是选择列(OP问题第2部分)。
data.table
,请使用complete.cases()
。在香草data.frame
上,complete.cases
比na.omit()
或dplyr::drop_na()
快。请注意,na.omit.data.frame
不支持cols=
。
以下是基础(蓝色),dplyr
(粉红色)和data.table
(黄色)方法的比较,用于删除所有或选择缺失的观察值,在100万个观测值的概念数据集中数字变量具有独立的5%丢失可能性,以及第2部分的4个变量的子集。
您的结果可能会因特定数据集的长度,宽度和稀疏度而异。
注意y轴上的对数刻度。
#------- Adjust these assumptions for your own use case ------------
row_size <- 1e6L
col_size <- 20 # not including ID column
p_missing <- 0.05 # likelihood of missing observation (except ID col)
col_subset <- 18:21 # second part of question: filter on select columns
#------- System info for benchmark ----------------------------------
R.version # R version 3.4.3 (2017-11-30), platform = x86_64-w64-mingw32
library(data.table); packageVersion('data.table') # 1.10.4.3
library(dplyr); packageVersion('dplyr') # 0.7.4
library(tidyr); packageVersion('tidyr') # 0.8.0
library(microbenchmark)
#------- Example dataset using above assumptions --------------------
fakeData <- function(m, n, p){
set.seed(123)
m <- matrix(runif(m*n), nrow=m, ncol=n)
m[m<p] <- NA
return(m)
}
df <- cbind( data.frame(id = paste0('ID',seq(row_size)),
stringsAsFactors = FALSE),
data.frame(fakeData(row_size, col_size, p_missing) )
)
dt <- data.table(df)
par(las=3, mfcol=c(1,2), mar=c(22,4,1,1)+0.1)
boxplot(
microbenchmark(
df[complete.cases(df), ],
na.omit(df),
df %>% drop_na,
dt[complete.cases(dt), ],
na.omit(dt)
), xlab='',
main = 'Performance: Drop any NA observation',
col=c(rep('lightblue',2),'salmon',rep('beige',2))
)
boxplot(
microbenchmark(
df[complete.cases(df[,col_subset]), ],
#na.omit(df), # col subset not supported in na.omit.data.frame
df %>% drop_na(col_subset),
dt[complete.cases(dt[,col_subset,with=FALSE]), ],
na.omit(dt, cols=col_subset) # see ?na.omit.data.table
), xlab='',
main = 'Performance: Drop NA obs. in select cols',
col=c('lightblue','salmon',rep('beige',2))
)
答案 7 :(得分:17)
使用dplyr包我们可以按如下方式过滤NA:
dplyr::filter(df, !is.na(columnname))
答案 8 :(得分:16)
这将返回至少有一个非NA值的行。
final[rowSums(is.na(final))<length(final),]
这将返回至少具有两个非NA值的行。
final[rowSums(is.na(final))<(length(final)-1),]
答案 9 :(得分:14)
对于你的第一个问题,我有一个代码,我很乐意摆脱所有的NA。感谢@Gregor让它变得更简单。
final[!(rowSums(is.na(final))),]
对于第二个问题,代码只是前一个解决方案的替代。
final[as.logical((rowSums(is.na(final))-5)),]
请注意,-5是数据中的列数。这将消除所有NA的行,因为rowSums加起来为5,并且它们在减法后变为零。这一次,as.logical是必要的。
答案 10 :(得分:13)
我们也可以使用子集函数。
finalData<-subset(data,!(is.na(data["mmul"]) | is.na(data["rnor"])))
这将只给出mmul和rnor
中没有NA的那些行答案 11 :(得分:9)
我是合成器:)。在这里,我将答案合并为一个函数:
#' keep rows that have a certain number (range) of NAs anywhere/somewhere and delete others
#' @param df a data frame
#' @param col restrict to the columns where you would like to search for NA; eg, 3, c(3), 2:5, "place", c("place","age")
#' \cr default is NULL, search for all columns
#' @param n integer or vector, 0, c(3,5), number/range of NAs allowed.
#' \cr If a number, the exact number of NAs kept
#' \cr Range includes both ends 3<=n<=5
#' \cr Range could be -Inf, Inf
#' @return returns a new df with rows that have NA(s) removed
#' @export
ez.na.keep = function(df, col=NULL, n=0){
if (!is.null(col)) {
# R converts a single row/col to a vector if the parameter col has only one col
# see https://radfordneal.wordpress.com/2008/08/20/design-flaws-in-r-2-%E2%80%94-dropped-dimensions/#comments
df.temp = df[,col,drop=FALSE]
} else {
df.temp = df
}
if (length(n)==1){
if (n==0) {
# simply call complete.cases which might be faster
result = df[complete.cases(df.temp),]
} else {
# credit: http://stackoverflow.com/a/30461945/2292993
log <- apply(df.temp, 2, is.na)
logindex <- apply(log, 1, function(x) sum(x) == n)
result = df[logindex, ]
}
}
if (length(n)==2){
min = n[1]; max = n[2]
log <- apply(df.temp, 2, is.na)
logindex <- apply(log, 1, function(x) {sum(x) >= min && sum(x) <= max})
result = df[logindex, ]
}
return(result)
}
答案 12 :(得分:7)
假设dat
为您的数据帧,可以使用
1。rowSums
> dat[!rowSums((is.na(dat))),]
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
6 ENSG00000221312 0 1 2 3 2
2。lapply
> dat[!Reduce('|',lapply(dat,is.na)),]
gene hsap mmul mmus rnor cfam
2 ENSG00000199674 0 2 2 2 2
6 ENSG00000221312 0 1 2 3 2
答案 13 :(得分:4)
delete.dirt <- function(DF, dart=c('NA')) {
dirty_rows <- apply(DF, 1, function(r) !any(r %in% dart))
DF <- DF[dirty_rows, ]
}
mydata <- delete.dirt(mydata)
上面的函数会删除数据框中包含&#39; NA&#39;的所有行。在任何列中并返回结果数据。如果您要检查多个值,例如NA
和?
,请将函数参数中的dart=c('NA')
更改为dart=c('NA', '?')
答案 14 :(得分:3)
我的猜测是,这可以通过这种方式更优雅地解决
m <- matrix(1:25, ncol = 5)
m[c(1, 6, 13, 25)] <- NA
df <- data.frame(m)
library(dplyr)
df %>%
filter_all(any_vars(is.na(.)))
#> X1 X2 X3 X4 X5
#> 1 NA NA 11 16 21
#> 2 3 8 NA 18 23
#> 3 5 10 15 20 NA
答案 15 :(得分:1)
一种通用且产生相当可读的代码的方法是在dplyr软件包(filter
,filter_all
,filter_at
)中使用filter_if
函数及其变体:
library(dplyr)
vars_to_check <- c("rnor", "cfam")
# Filter a specific list of columns to keep only non-missing entries
df %>%
filter_at(.vars = vars(one_of(vars_to_check)),
~ !is.na(.))
# Filter all the columns to exclude NA
df %>%
filter_all(~ !is.na(.))
# Filter only numeric columns
df %>%
filter_if(is.numeric,
~ !is.na(.))
答案 16 :(得分:1)
dplyr 1.0.4 向 filter
引入了两个伴随函数:它们是 if_any()
和 if_all()
。在这种情况下,if_all()
伴随函数将特别有用:
a) 删除所有列中包含 NA 的行
df %>%
filter(if_all(everything(), ~ !is.na(.x)))
此行将仅保留所有列都没有 NA 的行。
b) 删除仅在某些列中包含 NA 的行
cols_to_check = c("rnor", "cfam")
df %>%
filter(if_all(cols_to_check, ~ !is.na(.x)))
这一行将检查是否有任何指定的列 (cols_to_check) 有 NA,并且只保留那些不是这种情况的行。