我正在尝试使用Dnnregressor预测商品的价格,而我无法弄清楚这种不断出现的错误。我从pandas dataframe创建了数字和分类列,并将其输入DNNRegressor。关于这个特殊错误,网上帮助不大。
请帮我修复此错误。感谢
AttributeError Traceback (most recent call last)
<ipython-input-27-790ecef8c709> in <module>()
92
93 if __name__ == '__main__':
---> 94 main()
<ipython-input-27-790ecef8c709> in main()
81 # learning_rate=0.1, l1_regularization_strength=0.001))
82 est = tf.estimator.DNNRegressor(feature_columns = feature_columns, hidden_units = [10, 10], model_dir = 'data')
---> 83 est.train(input_fn = get_train_input_fn(Xtrain, ytrain), steps = 500)
84 scores = est.evaluate(input_fn = get_test_input_fn(Xtest, ytest))
85 print('Loss Score: {0:f}' .format(scores['average_loss']))
C:\Users\user\Anaconda3\lib\site- packages\tensorflow\python\estimator\estimator.py in train(self, input_fn, hooks, steps, max_steps)
239 hooks.append(training.StopAtStepHook(steps, max_steps))
240
--> 241 loss = self._train_model(input_fn=input_fn, hooks=hooks)
242 logging.info('Loss for final step: %s.', loss)
243 return self
C:\Users\user\Anaconda3\lib\site-packages\tensorflow\python\estimator\estimator.py in _train_model(self, input_fn, hooks)
628 input_fn, model_fn_lib.ModeKeys.TRAIN)
629 estimator_spec = self._call_model_fn(features, labels,
--> 630 model_fn_lib.ModeKeys.TRAIN)
631 ops.add_to_collection(ops.GraphKeys.LOSSES, estimator_spec.loss)
632 all_hooks.extend(hooks)
C:\Users\user\Anaconda3\lib\site- packages\tensorflow\python\estimator\estimator.py in _call_model_fn(self, features, labels, mode)
613 if 'config' in model_fn_args:
614 kwargs['config'] = self.config
--> 615 model_fn_results = self._model_fn(features=features, **kwargs)
616
617 if not isinstance(model_fn_results, model_fn_lib.EstimatorSpec):
C:\Users\user\Anaconda3\lib\site-packages\tensorflow\python\estimator\canned\dnn.py in _model_fn(features, labels, mode, config)
389 dropout=dropout,
390 input_layer_partitioner=input_layer_partitioner,
--> 391 config=config)
392 super(DNNRegressor, self).__init__(
393 model_fn=_model_fn, model_dir=model_dir, config=config)
C:\Users\user\Anaconda3\lib\site-packages\tensorflow\python\estimator\canned\dnn.py in _dnn_model_fn(features, labels, mode, head, hidden_units, feature_columns, optimizer, activation_fn, dropout, input_layer_partitioner, config)
100 net = feature_column_lib.input_layer(
101 features=features,
--> 102 feature_columns=feature_columns)
103
104 for layer_id, num_hidden_units in enumerate(hidden_units):
C:\Users\user\Anaconda3\lib\site-packages\tensorflow\python\feature_column\feature_column.py in input_layer(features, feature_columns, weight_collections, trainable)
205 ValueError: if an item in `feature_columns` is not a `_DenseColumn`.
206 """
--> 207 _check_feature_columns(feature_columns)
208 for column in feature_columns:
209 if not isinstance(column, _DenseColumn):
C:\Users\user\Anaconda3\lib\site- packages\tensorflow\python\feature_column\feature_column.py in _check_feature_columns(feature_columns)
1660 name_to_column = dict()
1661 for column in feature_columns:
-> 1662 if column.name in name_to_column:
1663 raise ValueError('Duplicate feature column name found for columns: {} '
1664 'and {}. This usually means that these columns refer to '
C:\Users\user\Anaconda3\lib\site-packages\tensorflow\python\feature_column\feature_column.py in name(self)
2451 @property
2452 def name(self):
-> 2453 return '{}_indicator'.format(self.categorical_column.name)
2454
2455 def _transform_feature(self, inputs):
AttributeError: 'str' object has no attribute 'name'
以下是代码:
def get_train_input_fn(Xtrain, ytrain):
return tf.estimator.inputs.pandas_input_fn(
x = Xtrain,
y = ytrain,
batch_size = 30,
num_epochs = None,
shuffle = True)
def get_test_input_fn(Xtest, ytest):
return tf.estimator.inputs.pandas_input_fn(
x = Xtest,
y = ytest,
batch_size = 32,
num_epochs = 1,
shuffle = False)
def main():
Xtrain, Xtest, ytrain, ytest = train_test_split(merc, ytr, test_size = 0.4, random_state = 42)
feature_columns = []
brand_rating = tf.feature_column.numeric_column('brand_rating')
feature_columns.append(brand_rating)
sentiment = tf.feature_column.numeric_column('description_polarity')
feature_columns.append(sentiment)
item_condition = tf.feature_column.numeric_column('item_condition_id')
feature_columns.append(item_condition)
shipping = tf.feature_column.indicator_column('shipping')
feature_columns.append(shipping)
name = tf.feature_column.embedding_column('item_name', 34) #(column name, dimension(no. of unique values ** 0.25))
feature_columns.append(name)
general = tf.feature_column.categorical_column_with_hash_bucket('General', 12)
feature_columns.append(general)
sc1 = tf.feature_column.categorical_column_with_hash_bucket('SC1', 120)
feature_columns.append(sc1)
sc2 = tf.feature_column.categorical_column_with_hash_bucket('SC2', 900)
feature_columns.append(sc2)
print(feature_columns)
#est = tf.estimator.DNNRegressor(feature_columns, hidden_units = [10, 10], optimizer=tf.train.ProximalAdagradOptimizer(
# learning_rate=0.1, l1_regularization_strength=0.001))
est = tf.estimator.DNNRegressor(feature_columns = feature_columns, hidden_units = [10, 10], model_dir = 'data')
est.train(input_fn = get_train_input_fn(Xtrain, ytrain), steps = 500)
答案 0 :(得分:1)
tf.feature_column.embedding_column
的第一个参数必须是分类列,而不是字符串。请参阅API spec。
代码中的违规行是:
tf.feature_column.embedding_column('item_name', 34)
答案 1 :(得分:0)
使用后
general = tf.feature_column.categorical_column_with_hash_bucket('General', 12)
和其他feature_column.categorical_column_with ...,则应使用
general_indicator = tf.feature_column.indicator_column(general)
,然后将其附加到feature_columns列表中。
feature_columns.append(general_indicator)