已知XOR问题由给定所有4个布尔输入和输出的多层感知器解决,它训练并记忆重现I / O所需的权重。 E.g。
mutate_sqrt <- function(df, string){
string_col <- grep(string, names(df), value = TRUE)
df2 <- df %>% mutate_at(vars(contains(string)), funs("sqrt" = sqrt(.)))
if (length(string_col) == 1){
df2 <- df2 %>% setNames(sub("^sqrt$", paste(string_col, "sqrt", sep = "_"), names(.)))
}
return(df2)
}
mutate_sqrt(df, "other")
# var1 var2 other other_sqrt
# 1 1 4 9 3
# 2 2 5 9 3
mutate_sqrt(df2, "other")
# var1 var2 other1 other2 other1_sqrt other2_sqrt
# 1 1 4 9 16 3 4
# 2 2 5 9 16 3 4
我们看到我们已经完全训练了网络来记忆XOR的输出:
import numpy as np
np.random.seed(0)
def sigmoid(x): # Returns values that sums to one.
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(sx):
# See https://math.stackexchange.com/a/1225116
return sx * (1 - sx)
# Cost functions.
def cost(predicted, truth):
return truth - predicted
xor_input = np.array([[0,0], [0,1], [1,0], [1,1]])
xor_output = np.array([[0,1,1,0]]).T
X = xor_input
Y = xor_output
# Define the shape of the weight vector.
num_data, input_dim = X.shape
# Lets set the dimensions for the intermediate layer.
hidden_dim = 5
# Initialize weights between the input layers and the hidden layer.
W1 = np.random.random((input_dim, hidden_dim))
# Define the shape of the output vector.
output_dim = len(Y.T)
# Initialize weights between the hidden layers and the output layer.
W2 = np.random.random((hidden_dim, output_dim))
num_epochs = 10000
learning_rate = 1.0
for epoch_n in range(num_epochs):
layer0 = X
# Forward propagation.
# Inside the perceptron, Step 2.
layer1 = sigmoid(np.dot(layer0, W1))
layer2 = sigmoid(np.dot(layer1, W2))
# Back propagation (Y -> layer2)
# How much did we miss in the predictions?
layer2_error = cost(layer2, Y)
# In what direction is the target value?
# Were we really close? If so, don't change too much.
layer2_delta = layer2_error * sigmoid_derivative(layer2)
# Back propagation (layer2 -> layer1)
# How much did each layer1 value contribute to the layer2 error (according to the weights)?
layer1_error = np.dot(layer2_delta, W2.T)
layer1_delta = layer1_error * sigmoid_derivative(layer1)
# update weights
W2 += learning_rate * np.dot(layer1.T, layer2_delta)
W1 += learning_rate * np.dot(layer0.T, layer1_delta)
[OUT]:
# On the training data
[int(prediction > 0.5) for prediction in layer2]
如果我们重新输入相同的输入,我们会得到相同的输出:
[0, 1, 1, 0]
[OUT]:
for x, y in zip(X, Y):
layer1_prediction = sigmoid(np.dot(W1.T, x)) # Feed the unseen input into trained W.
prediction = layer2_prediction = sigmoid(np.dot(W2.T, layer1_prediction)) # Feed the unseen input into trained W.
print(int(prediction > 0.5), y)
但如果我们重新训练参数(W1和W2)而没有一个数据点,即
0 [0]
1 [1]
1 [1]
0 [0]
xor_input = np.array([[0,0], [0,1], [1,0], [1,1]])
xor_output = np.array([[0,1,1,0]]).T
使用相同代码的其余部分,无论我如何更改超参数,它都无法学习XOR函数并重现I / O.
X = xor_input[:-1]
Y = xor_output[:-1]
[OUT]:
for x, y in zip(xor_input, xor_output):
layer1_prediction = sigmoid(np.dot(W1.T, x)) # Feed the unseen input into trained W.
prediction = layer2_prediction = sigmoid(np.dot(W2.T, layer1_prediction)) # Feed the unseen input into trained W.
print(int(prediction > 0.5), y)
0 [0]
1 [1]
1 [1]
1 [0]
我们无法完全训练XOR功能:'
# Shuffle the order of the inputs
_temp = list(zip(X, Y))
random.shuffle(_temp)
xor_input_shuff, xor_output_shuff = map(np.array, zip(*_temp))
[OUT]:
for x, y in zip(xor_input, xor_output):
layer1_prediction = sigmoid(np.dot(W1.T, x)) # Feed the unseen input into trained W.
prediction = layer2_prediction = sigmoid(np.dot(W2.T, layer1_prediction)) # Feed the unseen input into trained W.
print(x, int(prediction > 0.5), y)
因此,当文献指出多层感知器(Aka基本深度学习)解决XOR时,是否意味着它可以完全学习和记忆权重给定完整的输入/输出但不能如果缺少一个数据点,则推广XOR问题?
以下是Kaggle数据集的链接,回答者可以自己测试网络:https://www.kaggle.com/alvations/xor-with-mlp/
答案 0 :(得分:1)
我认为学习(概括)XOR和记忆XOR是不同的事情。
如你所见,双层感知器可以记忆XOR,即存在权重组合,其中损失最小且等于0(绝对最小值)。
如果权重是随机初始化的,那么你最终可能会得到实际学习XOR而不仅仅是记忆的情况。
请注意,多层感知器是非凸函数,因此可能存在多个最小值(甚至多个全局最小值)。当数据缺少一个输入时,有多个最小值(并且所有值都相等)并且存在最小值,其中缺失点将被正确分类。因此,MLP可以学习异或。 (虽然发现体重组合可能很难找到缺失点)。
人们经常认为神经网络是通用函数逼近器,甚至可以逼近非感知标签。有鉴于此,您可能希望查看这项工作https://arxiv.org/abs/1611.03530