#!/usr/bin/python
"""
Skeleton code for k-means clustering mini-project.
"""
import pickle
import numpy
import matplotlib.pyplot as plt
import sys
sys.path.append("../tools/")
from feature_format import featureFormat, targetFeatureSplit
def Draw(pred, features, poi, mark_poi=False, name="image.png", f1_name="feature 1", f2_name="feature 2"):
""" some plotting code designed to help you visualize your clusters """
### plot each cluster with a different color--add more colors for
### drawing more than five clusters
colors = ["b", "c", "k", "m", "g"]
for ii, pp in enumerate(pred):
plt.scatter(features[ii][0], features[ii][1], color = colors[pred[ii]])
### if you like, place red stars over points that are POIs (just for funsies)
if mark_poi:
for ii, pp in enumerate(pred):
if poi[ii]:
plt.scatter(features[ii][0], features[ii][1], color="r", marker="*")
plt.xlabel(f1_name)
plt.ylabel(f2_name)
plt.savefig(name)
plt.show()
### load in the dict of dicts containing all the data on each person in the dataset
data_dict = pickle.load( open("../final_project/final_project_dataset.pkl", "r") )
### there's an outlier--remove it!
data_dict.pop("TOTAL", 0)
### the input features we want to use
### can be any key in the person-level dictionary (salary, director_fees, etc.)
feature_1 = "salary"
feature_2 = "exercised_stock_options"
poi = "poi"
features_list = [poi, feature_1, feature_2]
data = featureFormat(data_dict, features_list )
poi, finance_features = targetFeatureSplit( data )
### in the "clustering with 3 features" part of the mini-project,
### you'll want to change this line to
### for f1, f2, _ in finance_features:
### (as it's currently written, the line below assumes 2 features)
for f1, f2 in finance_features:
plt.scatter( f1, f2 )
plt.show()
### cluster here; create predictions of the cluster labels
### for the data and store them to a list called pred
### rename the "name" parameter when you change the number of features
### so that the figure gets saved to a different file
try:
Draw(pred, finance_features, poi, mark_poi=False, name="clusters.pdf", f1_name=feature_1, f2_name=feature_2)
except NameError:
print "no predictions object named pred found, no clusters to plot"
我收到此错误EOF 因为它适用于其他人..但对我来说显示了一些错误..请帮助我这些家伙..提前感谢 我收到此错误EOF 因为它适用于其他人..但对我来说显示了一些错误..请帮助我这些家伙..提前感谢 我收到此错误EOF 因为它适用于其他人..但对我来说显示了一些错误..请帮助我这些家伙..提前感谢 我收到此错误EOF 因为它适用于其他人..但是对我来说显示了一些错误..请帮助我这些家伙..提前感谢
ERROR :
Traceback (most recent call last):
File “C:\Users\LENOVO\Desktop\machine learning udacity\Mini-project 1\Email\k_means\k_means_cluster.py”, line 42, in
data_dict = pickle.load( open("…/final_project/final_project_dataset.pkl", “r”) )
File “C:\Python27\lib\pickle.py”, line 1384, in load
return Unpickler(file).load()
File “C:\Python27\lib\pickle.py”, line 864, in load
dispatchkey
File “C:\Python27\lib\pickle.py”, line 886, in load_eof
raise EOFError
EOFError
答案 0 :(得分:0)
很可能你的pickle文件已损坏。
例如,不完整(截断)。