使用matplotlib中的颜色填充shapefile多边形

时间:2018-01-30 11:32:35

标签: python matplotlib shapefile matplotlib-basemap

我正在搜索基于值填充shapefile的多边形的方法。 到底图教程(http://basemaptutorial.readthedocs.io/en/latest/shapefile.html)到目前为止,我已经找到了如何使用特定颜色填充多边形。

import matplotlib.pyplot as plt
import pypyodbc
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
from matplotlib.patches import PathPatch
import numpy as np

fig= plt.figure()
ax= fig.add_subplot(111)
m=Basemap(projection='cyl',llcrnrlat=34.5,llcrnrlon=19,urcrnrlat=42,urcrnrlon=28.5,resolution='h')
m.drawmapboundary(fill_color='aqua')
m.fillcontinents(color='#ddaa66',lake_color='aqua')
m.drawcoastlines()
m.readshapefile('nomoi','nomoi')

patches   = []

for info, shape in zip(m.nomoi_info, m.nomoi):
    if info['ID_2'] == 14426:
        patches.append( Polygon(np.array(shape), True) )

ax.add_collection(PatchCollection(patches, facecolor='m', edgecolor='k', linewidths=1., zorder=2))

plt.show()

我想做的是从字典中获取值:

dict1={14464: 1.16, 14465: 1.35, 14466: 1.28, 14467: 1.69, 14468: 1.81, 14418: 1.38}

其中键是shapefile中的信息[&#​​39; ID_2']列,如上面的代码所示,值是我想要表示颜色的变量。意思是让色彩图从1.16变为1.81,每个多边形(ID_2)的颜色与dict1的值相关。

提前致谢

1 个答案:

答案 0 :(得分:3)

似乎你想在底图中产生一个等值线图 为此,您需要一个色彩映射cmap和一个规范化norm,以便将值映射到颜色cmap(norm(val))。对于每个形状,可以将Polygon的颜色设置为字典中的相应颜色,在本例中为cmap(norm(dict1[info['ID_2']]))

PatchCollection内需要设置match_original=True以保持原始多边形的颜色。

最后,从色彩图和标准化生成色彩图可能很有用。

import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
import numpy as np

fig= plt.figure()
ax= fig.add_subplot(111)
m=Basemap(projection='cyl',llcrnrlat=34.5,llcrnrlon=19,
                           urcrnrlat=42,urcrnrlon=28.5,resolution='h')
m.drawmapboundary(fill_color='aqua')
m.fillcontinents(color='w',lake_color='aqua')
m.drawcoastlines()
m.readshapefile('data/nomoi/nomoi','nomoi')

dict1={14464: 1.16, 14465: 1.35, 14466: 1.28, 14467: 1.69, 14468: 1.81, 14418: 1.38}
colvals = dict1.values()

cmap=plt.cm.RdYlBu
norm=plt.Normalize(min(colvals),max(colvals))

patches   = []

for info, shape in zip(m.nomoi_info, m.nomoi):
    if info['ID_2'] in list(dict1.keys()):
        color=cmap(norm(dict1[info['ID_2']]))
        patches.append( Polygon(np.array(shape), True, color=color) )

pc = PatchCollection(patches, match_original=True, edgecolor='k', linewidths=1., zorder=2)
ax.add_collection(pc)

#colorbar
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array(colvals)
fig.colorbar(sm, ax=ax)

plt.show()

enter image description here