我是hadoop的新手。
我正在设置Giraph在带有纱线的hadoop-2.6.5上运行。
当我提交Giraph作业时,作业成功提交但失败了,我在登录容器系统日志下面:
2018-01-30 12:09:01,190 INFO [主要] org.apache.hadoop.mapreduce.v2.app.MRAppMaster:创建MRAppMaster 申请appattempt_1517293264136_0002_000002 2018-01-30 12:09:01,437 WARN [main] org.apache.hadoop.util.NativeCodeLoader: 无法为您的平台加载native-hadoop库...使用 builtin-java classes适用的地方2018-01-30 12:09:01,471 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster:执行时 代币:2018-01-30 12:09:01,471 INFO [主要] org.apache.hadoop.mapreduce.v2.app.MRAppMaster:种类: YARN_AM_RM_TOKEN,服务:,Ident:(appAttemptId {application_id { id:2 cluster_timestamp:1517293264136} attemptId:2} keyId: -1485907628)2018-01-30 12:09:01,583 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster:使用mapred newApiCommitter。 2018-01-30 12:09:02,154 INFO [主要] org.apache.hadoop.mapreduce.v2.app.MRAppMaster:OutputCommitter set in config null 2018-01-30 12:09:02,207致命[主要] org.apache.hadoop.mapreduce.v2.app.MRAppMaster:启动时出错 MRAppMaster java.lang.NoClassDefFoundError: io / netty / buffer / ByteBufAllocator at org.apache.giraph.bsp.BspOutputFormat.getOutputCommitter(BspOutputFormat.java:62) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster $ 1.call(MRAppMaster.java:470) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster $ 1.call(MRAppMaster.java:452) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster.callWithJobClassLoader(MRAppMaster.java:1541) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster.createOutputCommitter(MRAppMaster.java:452) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster.serviceInit(MRAppMaster.java:371) 在 org.apache.hadoop.service.AbstractService.init(AbstractService.java:163) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster $ 4.run(MRAppMaster.java:1499) 在java.security.AccessController.doPrivileged(Native Method)at javax.security.auth.Subject.doAs(Subject.java:422)at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1692) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster.initAndStartAppMaster(MRAppMaster.java:1496) 在 org.apache.hadoop.mapreduce.v2.app.MRAppMaster.main(MRAppMaster.java:1429) 引起:java.lang.ClassNotFoundException: io.netty.buffer.ByteBufAllocator at java.net.URLClassLoader.findClass(URLClassLoader.java:381)at java.lang.ClassLoader.loadClass(ClassLoader.java:424)at sun.misc.Launcher $ AppClassLoader.loadClass(Launcher.java:331)at at java.lang.ClassLoader.loadClass(ClassLoader.java:357)...还有13个 2018-01-30 12:09:02,209 INFO [main] org.apache.hadoop.util.ExitUtil: 退出状态1
日志中的诊断显示以下日志:
由于AM,应用程序application_1517293264136_0002失败了2次 appattempt_1517293264136_0002_000002的容器已退出 exitCode:1要获得更详细的输出,请检查应用程序跟踪 页:http://172.16.0.218:8088/proxy/application_1517293264136_0002/Then, 单击每个尝试的日志链接。诊断:来自的例外 集装箱推出。容器ID:container_1517293264136_0002_02_000001 退出代码:1堆栈跟踪:ExitCodeException exitCode = 1:at org.apache.hadoop.util.Shell.runCommand(Shell.java:575)at org.apache.hadoop.util.Shell.run(Shell.java:478)at org.apache.hadoop.util.Shell $ ShellCommandExecutor.execute(Shell.java:766) 在 org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212) 在 org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302) 在 org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82) 在java.util.concurrent.FutureTask.run(FutureTask.java:266)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 在 java.util.concurrent.ThreadPoolExecutor中的$ Worker.run(ThreadPoolExecutor.java:617) 在java.lang.Thread.run(Thread.java:745)容器退出时带有 非零退出代码1未通过此尝试。申请失败。
它失败的类是io/netty/buffer/ByteBufAllocator
,它在netty-all jar中:https://mvnrepository.com/artifact/io.netty/netty-all
从其他问题我尝试在HADOOP_CLASSPATH中添加jar。
Yogin-Patel:hadoop yoginpatel$ echo $HADOOP_CLASSPATH
/Users/yoginpatel/Downloads/gradle-4.3/caches/modules-2/files-2.1/io.netty/netty-all/4.0.43.Final/9781746a179070e886e1fb4b1971a6bbf02061a4/netty-all-4.0.43.Final.jar
Yogin-Patel:hadoop yoginpatel$
它也出现在hadoop classpath
中。
Yogin-Patel:hadoop yoginpatel$ hadoop classpath
/Users/yoginpatel/hadoop/etc/hadoop:/Users/yoginpatel/hadoop/share/hadoop/common/lib/*:/Users/yoginpatel/hadoop/share/hadoop/common/*:/Users/yoginpatel/hadoop/share/hadoop/hdfs:/Users/yoginpatel/hadoop/share/hadoop/hdfs/lib/*:/Users/yoginpatel/hadoop/share/hadoop/hdfs/*:/Users/yoginpatel/hadoop/share/hadoop/yarn/lib/*:/Users/yoginpatel/hadoop/share/hadoop/yarn/*:/Users/yoginpatel/hadoop/share/hadoop/mapreduce/lib/*:/Users/yoginpatel/hadoop/share/hadoop/mapreduce/*:/Users/yoginpatel/Downloads/gradle-4.3/caches/modules-2/files-2.1/io.netty/netty-all/4.0.43.Final/9781746a179070e886e1fb4b1971a6bbf02061a4/netty-all-4.0.43.Final.jar:/contrib/capacity-scheduler/*.jar
Yogin-Patel:hadoop yoginpatel$
我正在尝试在开发环境中进行设置。这是单节点设置。
我甚至尝试过
job.addFileToClassPath(new Path("/Users/yoginpatel/Downloads/gradle-4.3/caches/modules-2/files-2.1/io.netty/netty-all/4.0.43.Final/9781746a179070e886e1fb4b1971a6bbf02061a4/netty-all-4.0.43.Final.jar"));
这些方法都没有帮助。如何让hadoop节点获得必要的jar访问?
这是一个GiraphJob提交代码,可以将地图缩减作业提交到群集:
@Test
public void testPageRank() throws IOException, ClassNotFoundException, InterruptedException {
GiraphConfiguration giraphConf = new GiraphConfiguration(getConf());
giraphConf.setWorkerConfiguration(1,1,100);
GiraphConstants.SPLIT_MASTER_WORKER.set(giraphConf, false);
giraphConf.setVertexInputFormatClass(JsonLongDoubleFloatDoubleVertexInputFormat.class);
GiraphFileInputFormat.setVertexInputPath(giraphConf,
new Path("/input/tiny-graph.txt"));
giraphConf.setVertexOutputFormatClass(IdWithValueTextOutputFormat.class);
giraphConf.setComputationClass(PageRankComputation.class);
GiraphJob giraphJob = new GiraphJob(giraphConf, "page-rank");
giraphJob.getInternalJob().addFileToClassPath(new Path("/Users/yoginpatel/Downloads/gradle-4.3/caches/modules-2/files-2.1/io.netty/netty-all/4.0.43.Final/9781746a179070e886e1fb4b1971a6bbf02061a4/netty-all-4.0.43.Final.jar"));
FileOutputFormat.setOutputPath(giraphJob.getInternalJob(),
new Path("/output/page-rank2"));
giraphJob.run(true);
}
private Configuration getConf() {
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://localhost:9000");
conf.set("yarn.resourcemanager.address", "localhost:8032");
// framework is now "yarn", should be defined like this in mapred-site.xm
conf.set("mapreduce.framework.name", "yarn");
return conf;
}
答案 0 :(得分:0)
我通过在hadoop lib路径中放置带有依赖项的giraph jar来实现它:
cp giraph-1.3.0-SNAPSHOT-for-hadoop-2.6.5-jar-with-dependencies.jar ~/hadoop/share/hadoop/mapreduce/lib/