我有一个pandas数据集,其中的列是以逗号分隔的字符串,例如1,2,3,10
:
data = [
{ 'id': 1, 'score': 9, 'topics': '11,22,30' },
{ 'id': 2, 'score': 7, 'topics': '11,18,30' },
{ 'id': 3, 'score': 6, 'topics': '1,12,30' },
{ 'id': 4, 'score': 4, 'topics': '1,18,30' }
]
df = pd.DataFrame(data)
我想获得topics
中每个值的计数和平均分数。所以:
topic_id,count,mean
1,2,5
11,2,8
12,1,6
等等。我怎么能这样做?
我到目前为止:
df['topic_ids'] = df.topics.str.split()
但是现在我想我要爆炸topic_ids
,所以整个值集中的每个唯一值都有一列......?
答案 0 :(得分:3)
不需要groupby
和agg
df.topics=df.topics.str.split(',')
New_df=pd.DataFrame({'topics':np.concatenate(df.topics.values),'id':df.id.repeat(df.topics.apply(len)),'score':df.score.repeat(df.topics.apply(len))})
New_df.groupby('topics').score.agg(['count','mean'])
Out[1256]:
count mean
topics
1 2 5.0
11 2 8.0
12 1 6.0
18 2 5.5
22 1 9.0
30 4 6.5
答案 1 :(得分:2)
-(IBAction)buttonPressed:(UIButton *)sender
{
UIImagePickerController *imagePickerController = [[UIImagePickerController alloc] init];
imagePickerController.delegate = self;
if ([UIImagePickerController isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary]) {
imagePickerController.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
}
[self presentViewController:imagePickerController animated:YES completion:nil];
}
- (void)imagePickerController:(UIImagePickerController *)picker didFinishPickingImage:(UIImage *)image editingInfo:(NSDictionary *)Info
{
NSData *imageDataPicker = UIImageJPEGRepresentation(image, 0.1); //For resize
if([imageDataPicker length]<2097152) //bytes 1048576
{
[self dismissViewControllerAnimated:YES completion:nil];
[self SubmitImage1:image];
}
}
// UIViewContentModeScaleAspectFill will fill the entire view
-(void)SubmitImage1:(UIImage *)image
{
_EditProfileImage.image = image;
_EditProfileImage.layer.cornerRadius = _EditProfileImage.frame.size.width / 2;
_EditProfileImage.contentMode = UIViewContentModeScaleAspectFill;
_EditProfileImage.layer.masksToBounds = YES;
_EditProfileImage.layer.borderWidth = 3.0f;
_EditProfileImage.layer.borderColor = [UIColor blackColor].CGColor;
}
答案 2 :(得分:1)
这是一种方式。 Reindex&amp;堆栈,然后groupby&amp; AGG
import pandas as pd
data = [
{ 'id': 1, 'score': 9, 'topics': '11,22,30' },
{ 'id': 2, 'score': 7, 'topics': '11,18,30' },
{ 'id': 3, 'score': 6, 'topics': '1,12,30' },
{ 'id': 4, 'score': 4, 'topics': '1,18,30' }
]
df = pd.DataFrame(data)
df.topics = df.topics.str.split(',')
df2 = pd.DataFrame(df.topics.tolist(), index=[df.id, df.score])\
.stack()\
.reset_index(name='topics')\
.drop('level_2', 1)
df2.groupby('topics').score.agg(['count', 'mean']).reset_index()