请注意本帖末尾的更新。
更新:我为此库创建了public project on GitHub!
我希望有一个模板,一劳永逸地通过operator<<
来打印所有STL容器。在伪代码中,我正在寻找这样的东西:
template<container C, class T, String delim = ", ", String open = "[", String close = "]">
std::ostream & operator<<(std::ostream & o, const C<T> & x)
{
o << open;
// for (typename C::const_iterator i = x.begin(); i != x.end(); i++) /* Old-school */
for (auto i = x.begin(); i != x.end(); i++)
{
if (i != x.begin()) o << delim;
o << *i;
}
o << close;
return o;
}
现在我已经在SO上看到了很多模板魔法,这是我从未想过的可能,所以我想知道是否有人可以提出与所有容器相匹配的东西C.也许某些特质可以判断出是否存在某些东西必要的迭代器?
非常感谢!
更新(和解决方案)
在Channel 9再次提出这个问题之后,我从Sven Groot得到了一个很棒的答案,结合了一些SFINAE类型的特征,似乎以一种完全通用和可嵌套的方式解决了这个问题。分隔符可以是单独的专用,包括std :: set的示例特化,以及使用自定义分隔符的示例。
帮助程序“wrap_array()”可用于打印原始C数组。 更新:可用于打印的对和元组;默认分隔符是圆括号。
enable-if类型特征需要C ++ 0x,但经过一些修改后,应该可以制作一个C ++ 98版本。元组需要可变参数模板,因此C ++ 0x。
我已经要求Sven在这里发布解决方案以便我可以接受它,但与此同时我想自己发布代码以供参考。 (更新: Sven现在已经在下面发布了他的代码,我做出了接受的答案。我自己的代码使用容器类型特征,这对我有用,但可能会导致非容器类提供迭代器的意外行为。)
标题(prettyprint.h):
#ifndef H_PRETTY_PRINT
#define H_PRETTY_PRINT
#include <type_traits>
#include <iostream>
#include <utility>
#include <tuple>
namespace std
{
// Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
template<typename T, typename TTraits, typename TAllocator> class set;
}
namespace pretty_print
{
// SFINAE type trait to detect a container based on whether T::const_iterator exists.
// (Improvement idea: check also if begin()/end() exist.)
template<typename T>
struct is_container_helper
{
private:
template<typename C> static char test(typename C::const_iterator*);
template<typename C> static int test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public ::std::integral_constant<bool, is_container_helper<T>::value> { };
// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
typedef TChar char_type;
const TChar * prefix;
const TChar * delimiter;
const TChar * postfix;
};
// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
typedef delimiters_values<TChar> type;
static const type values;
};
// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "[", ", ", "]" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"[", L", ", L"]" };
// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters< ::std::set<T, TTraits, TAllocator>, char>::values = { "{", ", ", "}" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };
// Delimiters for pair (reused for tuple, see below)
template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters< ::std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters< ::std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };
// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = ::std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar>>
struct print_container_helper
{
typedef TChar char_type;
typedef TDelimiters delimiters_type;
typedef std::basic_ostream<TChar, TCharTraits> & ostream_type;
print_container_helper(const T & container)
: _container(container)
{
}
inline void operator()(ostream_type & stream) const
{
if (delimiters_type::values.prefix != NULL)
stream << delimiters_type::values.prefix;
for (typename T::const_iterator beg = _container.begin(), end = _container.end(), it = beg; it != end; ++it)
{
if (it != beg && delimiters_type::values.delimiter != NULL)
stream << delimiters_type::values.delimiter;
stream << *it;
}
if (delimiters_type::values.postfix != NULL)
stream << delimiters_type::values.postfix;
}
private:
const T & _container;
};
// Type-erasing helper class for easy use of custom delimiters.
// Requires TCharTraits = std::char_traits<TChar> and TChar = char or wchar_t, and MyDelims needs to be defined for TChar.
// Usage: "cout << pretty_print::custom_delims<MyDelims>(x)".
struct custom_delims_base
{
virtual ~custom_delims_base() { }
virtual ::std::ostream & stream(::std::ostream &) = 0;
virtual ::std::wostream & stream(::std::wostream &) = 0;
};
template <typename T, typename Delims>
struct custom_delims_wrapper : public custom_delims_base
{
custom_delims_wrapper(const T & t) : t(t) { }
::std::ostream & stream(::std::ostream & stream)
{
return stream << ::pretty_print::print_container_helper<T, char, ::std::char_traits<char>, Delims>(t);
}
::std::wostream & stream(::std::wostream & stream)
{
return stream << ::pretty_print::print_container_helper<T, wchar_t, ::std::char_traits<wchar_t>, Delims>(t);
}
private:
const T & t;
};
template <typename Delims>
struct custom_delims
{
template <typename Container> custom_delims(const Container & c) : base(new custom_delims_wrapper<Container, Delims>(c)) { }
~custom_delims() { delete base; }
custom_delims_base * base;
};
} // namespace pretty_print
template <typename TChar, typename TCharTraits, typename Delims>
inline std::basic_ostream<TChar, TCharTraits> & operator<<(std::basic_ostream<TChar, TCharTraits> & stream, const pretty_print::custom_delims<Delims> & p)
{
return p.base->stream(stream);
}
// Template aliases for char and wchar_t delimiters
// Enable these if you have compiler support
//
// Implement as "template<T, C, A> const sdelims::type sdelims<std::set<T,C,A>>::values = { ... }."
//template<typename T> using pp_sdelims = pretty_print::delimiters<T, char>;
//template<typename T> using pp_wsdelims = pretty_print::delimiters<T, wchar_t>;
namespace std
{
// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream,
const ::pretty_print::print_container_helper<T, TChar, TCharTraits, TDelimiters> & helper)
{
helper(stream);
return stream;
}
// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
inline typename enable_if< ::pretty_print::is_container<T>::value, basic_ostream<TChar, TCharTraits>&>::type
operator<<(basic_ostream<TChar, TCharTraits> & stream, const T & container)
{
return stream << ::pretty_print::print_container_helper<T, TChar, TCharTraits>(container);
}
// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const pair<T1, T2> & value)
{
if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix != NULL)
stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix;
stream << value.first;
if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter != NULL)
stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter;
stream << value.second;
if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix != NULL)
stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix;
return stream;
}
} // namespace std
// Prints a tuple to the stream using delimiters from delimiters<std::pair<tuple_dummy_t, tuple_dummy_t>>.
namespace pretty_print
{
struct tuple_dummy_t { }; // Just if you want special delimiters for tuples.
typedef std::pair<tuple_dummy_t, tuple_dummy_t> tuple_dummy_pair;
template<typename Tuple, size_t N, typename TChar, typename TCharTraits>
struct pretty_tuple_helper
{
static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value)
{
pretty_tuple_helper<Tuple, N - 1, TChar, TCharTraits>::print(stream, value);
if (delimiters<tuple_dummy_pair, TChar>::values.delimiter != NULL)
stream << delimiters<tuple_dummy_pair, TChar>::values.delimiter;
stream << std::get<N - 1>(value);
}
};
template<typename Tuple, typename TChar, typename TCharTraits>
struct pretty_tuple_helper<Tuple, 1, TChar, TCharTraits>
{
static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value) { stream << ::std::get<0>(value); }
};
} // namespace pretty_print
namespace std
{
template<typename TChar, typename TCharTraits, typename ...Args>
inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const tuple<Args...> & value)
{
if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix != NULL)
stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix;
::pretty_print::pretty_tuple_helper<const tuple<Args...> &, sizeof...(Args), TChar, TCharTraits>::print(stream, value);
if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix != NULL)
stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix;
return stream;
}
} // namespace std
// A wrapper for raw C-style arrays. Usage: int arr[] = { 1, 2, 4, 8, 16 }; std::cout << wrap_array(arr) << ...
namespace pretty_print
{
template <typename T, size_t N>
struct array_wrapper
{
typedef const T * const_iterator;
typedef T value_type;
array_wrapper(const T (& a)[N]) : _array(a) { }
inline const_iterator begin() const { return _array; }
inline const_iterator end() const { return _array + N; }
private:
const T * const _array;
};
} // namespace pretty_print
template <typename T, size_t N>
inline pretty_print::array_wrapper<T, N> pretty_print_array(const T (& a)[N])
{
return pretty_print::array_wrapper<T, N>(a);
}
#endif
使用示例:
#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
#include <array>
#include <tuple>
#include <utility>
#include <string>
#include "prettyprint.h"
// Specialization for a particular container
template<> const pretty_print::delimiters_values<char> pretty_print::delimiters<std::vector<double>, char>::values = { "|| ", " : ", " ||" };
// Custom delimiters for one-off use
struct MyDel { static const delimiters_values<char> values; };
const delimiters_values<char> MyDel::values = { "<", "; ", ">" };
int main(int argc, char * argv[])
{
std::string cs;
std::unordered_map<int, std::string> um;
std::map<int, std::string> om;
std::set<std::string> ss;
std::vector<std::string> v;
std::vector<std::vector<std::string>> vv;
std::vector<std::pair<int, std::string>> vp;
std::vector<double> vd;
v.reserve(argc - 1);
vv.reserve(argc - 1);
vp.reserve(argc - 1);
vd.reserve(argc - 1);
std::cout << "Printing pairs." << std::endl;
while (--argc)
{
std::string s(argv[argc]);
std::pair<int, std::string> p(argc, s);
um[argc] = s;
om[argc] = s;
v.push_back(s);
vv.push_back(v);
vp.push_back(p);
vd.push_back(1./double(i));
ss.insert(s);
cs += s;
std::cout << " " << p << std::endl;
}
std::array<char, 5> a{{ 'h', 'e', 'l', 'l', 'o' }};
std::cout << "Vector: " << v << std::endl
<< "Incremental vector: " << vv << std::endl
<< "Another vector: " << vd << std::endl
<< "Pairs: " << vp << std::endl
<< "Set: " << ss << std::endl
<< "OMap: " << om << std::endl
<< "UMap: " << um << std::endl
<< "String: " << cs << std::endl
<< "Array: " << a << std::endl
;
// Using custom delimiters manually:
std::cout << pretty_print::print_container_helper<std::vector<std::string>, char, std::char_traits<char>, MyDel>(v) << std::endl;
// Using custom delimiters with the type-erasing helper class
std::cout << pretty_print::custom_delims<MyDel>(v) << std::endl;
// Pairs and tuples and arrays:
auto a1 = std::make_pair(std::string("Jello"), 9);
auto a2 = std::make_tuple(1729);
auto a3 = std::make_tuple("Qrgh", a1, 11);
auto a4 = std::make_tuple(1729, 2875, std::pair<double, std::string>(1.5, "meow"));
int arr[] = { 1, 4, 9, 16 };
std::cout << "C array: " << wrap_array(arr) << std::endl
<< "Pair: " << a1 << std::endl
<< "1-tuple: " << a2 << std::endl
<< "n-tuple: " << a3 << std::endl
<< "n-tuple: " << a4 << std::endl
;
}
进一步改进的想法:
std::tuple<...>
相同的方式实现std::pair<S,T>
的输出。最近更新:
pretty_print
命名空间中。只有全局流操作符和pretty_print_array
包装器位于全局命名空间中。operator<<
正确显示std
。注意:
std::copy()
进行漂亮的打印。如果这是一个理想的功能,我可以恢复漂亮的迭代器,但下面的Sven代码有实现。感谢所有贡献的人!
注意:如果您正在寻找一种快速部署自定义分隔符的方法,这是使用类型擦除的一种方法。我们假设您已经构建了一个分隔符类,比如说MyDel
,如下所示:
struct MyDel { static const pretty_print::delimiters_values<char> values; };
const pretty_print::delimiters_values<char> MyDel::values = { "<", "; ", ">" };
现在我们希望能够使用这些分隔符为某个容器std::cout << MyPrinter(v) << std::endl;
编写v
。 MyPrinter
将是一个类型擦除类,如下所示:
struct wrapper_base
{
virtual ~wrapper_base() { }
virtual std::ostream & stream(std::ostream & o) = 0;
};
template <typename T, typename Delims>
struct wrapper : public wrapper_base
{
wrapper(const T & t) : t(t) { }
std::ostream & stream(std::ostream & o)
{
return o << pretty_print::print_container_helper<T, char, std::char_traits<char>, Delims>(t);
}
private:
const T & t;
};
template <typename Delims>
struct MyPrinter
{
template <typename Container> MyPrinter(const Container & c) : base(new wrapper<Container, Delims>(c)) { }
~MyPrinter() { delete base; }
wrapper_base * base;
};
template <typename Delims>
std::ostream & operator<<(std::ostream & o, const MyPrinter<Delims> & p) { return p.base->stream(o); }
答案 0 :(得分:78)
这个解决方案的灵感来自Marcelo的解决方案,但有一些变化:
#include <iostream>
#include <iterator>
#include <type_traits>
#include <vector>
#include <algorithm>
// This works similar to ostream_iterator, but doesn't print a delimiter after the final item
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar> >
class pretty_ostream_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void>
{
public:
typedef TChar char_type;
typedef TCharTraits traits_type;
typedef std::basic_ostream<TChar, TCharTraits> ostream_type;
pretty_ostream_iterator(ostream_type &stream, const char_type *delim = NULL)
: _stream(&stream), _delim(delim), _insertDelim(false)
{
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator=(const T &value)
{
if( _delim != NULL )
{
// Don't insert a delimiter if this is the first time the function is called
if( _insertDelim )
(*_stream) << _delim;
else
_insertDelim = true;
}
(*_stream) << value;
return *this;
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator*()
{
return *this;
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator++()
{
return *this;
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator++(int)
{
return *this;
}
private:
ostream_type *_stream;
const char_type *_delim;
bool _insertDelim;
};
#if _MSC_VER >= 1400
// Declare pretty_ostream_iterator as checked
template<typename T, typename TChar, typename TCharTraits>
struct std::_Is_checked_helper<pretty_ostream_iterator<T, TChar, TCharTraits> > : public std::tr1::true_type
{
};
#endif // _MSC_VER >= 1400
namespace std
{
// Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
// These aren't necessary if you do actually include the headers.
template<typename T, typename TAllocator> class vector;
template<typename T, typename TAllocator> class list;
template<typename T, typename TTraits, typename TAllocator> class set;
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> class map;
}
// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public std::false_type { };
// Mark vector as a container
template<typename T, typename TAllocator> struct is_container<std::vector<T, TAllocator> > : public std::true_type { };
// Mark list as a container
template<typename T, typename TAllocator> struct is_container<std::list<T, TAllocator> > : public std::true_type { };
// Mark set as a container
template<typename T, typename TTraits, typename TAllocator> struct is_container<std::set<T, TTraits, TAllocator> > : public std::true_type { };
// Mark map as a container
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> struct is_container<std::map<TKey, TValue, TTraits, TAllocator> > : public std::true_type { };
// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
typedef TChar char_type;
const TChar *prefix;
const TChar *delimiter;
const TChar *postfix;
};
// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
static const delimiters_values<TChar> values;
};
// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "{ ", ", ", " }" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"{ ", L", ", L" }" };
// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters<std::set<T, TTraits, TAllocator>, char>::values = { "[ ", ", ", " ]" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters<std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"[ ", L", ", L" ]" };
// Delimiters for pair
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters<std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters<std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };
// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar> >
struct print_container_helper
{
typedef TChar char_type;
typedef TDelimiters delimiters_type;
typedef std::basic_ostream<TChar, TCharTraits>& ostream_type;
print_container_helper(const T &container)
: _container(&container)
{
}
void operator()(ostream_type &stream) const
{
if( delimiters_type::values.prefix != NULL )
stream << delimiters_type::values.prefix;
std::copy(_container->begin(), _container->end(), pretty_ostream_iterator<typename T::value_type, TChar, TCharTraits>(stream, delimiters_type::values.delimiter));
if( delimiters_type::values.postfix != NULL )
stream << delimiters_type::values.postfix;
}
private:
const T *_container;
};
// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const print_container_helper<T, TChar, TDelimiters> &helper)
{
helper(stream);
return stream;
}
// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
typename std::enable_if<is_container<T>::value, std::basic_ostream<TChar, TCharTraits>&>::type
operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const T &container)
{
stream << print_container_helper<T, TChar, TCharTraits>(container);
return stream;
}
// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const std::pair<T1, T2> &value)
{
if( delimiters<std::pair<T1, T2>, TChar>::values.prefix != NULL )
stream << delimiters<std::pair<T1, T2>, TChar>::values.prefix;
stream << value.first;
if( delimiters<std::pair<T1, T2>, TChar>::values.delimiter != NULL )
stream << delimiters<std::pair<T1, T2>, TChar>::values.delimiter;
stream << value.second;
if( delimiters<std::pair<T1, T2>, TChar>::values.postfix != NULL )
stream << delimiters<std::pair<T1, T2>, TChar>::values.postfix;
return stream;
}
// Used by the sample below to generate some values
struct fibonacci
{
fibonacci() : f1(0), f2(1) { }
int operator()()
{
int r = f1 + f2;
f1 = f2;
f2 = r;
return f1;
}
private:
int f1;
int f2;
};
int main()
{
std::vector<int> v;
std::generate_n(std::back_inserter(v), 10, fibonacci());
std::cout << v << std::endl;
// Example of using pretty_ostream_iterator directly
std::generate_n(pretty_ostream_iterator<int>(std::cout, ";"), 20, fibonacci());
std::cout << std::endl;
}
与Marcelo的版本一样,它使用的is_container类型特征必须专门用于所有要支持的容器。也许可以使用特征来检查value_type
,const_iterator
,begin()
/ end()
,但我不确定我是否会推荐它,因为它可能会匹配符合这些条件但实际上不是容器的东西,例如std::basic_string
。与Marcelo的版本一样,它使用专门用于指定要使用的分隔符的模板。
主要区别在于我在pretty_ostream_iterator
周围构建了我的版本,其工作方式与std::ostream_iterator
类似,但在最后一项之后不会打印分隔符。格式化容器由print_container_helper
完成,可以直接用于打印没有is_container特征的容器,或指定不同的分隔符类型。
我还定义了is_container和delimiters,因此它适用于具有非标准谓词或分配器的容器,以及char和wchar_t。运算符&lt;&lt;函数本身也被定义为与char和wchar_t流一起使用。
最后,我使用了std::enable_if
,它作为C ++ 0x的一部分提供,适用于Visual C ++ 2010和g ++ 4.3(需要-std = c ++ 0x标志)及更高版本。这种方式不依赖于Boost。
答案 1 :(得分:21)
这已被编辑了几次,我们决定调用包装集合RangePrinter的主类
一旦您编写了一次性运算符&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;重载,除了您需要一个特殊的地图来打印该对,并可能想要在那里自定义分隔符。
您还可以在项目上使用特殊的“打印”功能,而不是直接输出。有点像STL算法允许您传递自定义谓词。使用map,您可以使用这种方式,使用std :: pair的自定义打印机。
您的“默认”打印机只会将其输出到流中。
好的,让我们开始使用自定义打印机。我将我的外部类更改为RangePrinter。所以我们有2个迭代器和一些分隔符,但没有自定义如何打印实际项目。
struct DefaultPrinter
{
template< typename T >
std::ostream & operator()( std::ostream& os, const T& t ) const
{
return os << t;
}
// overload for std::pair
template< typename K, typename V >
std::ostream & operator()( std::ostream & os, std::pair<K,V> const& p)
{
return os << p.first << '=' << p.second;
}
};
// some prototypes
template< typename FwdIter, typename Printer > class RangePrinter;
template< typename FwdIter, typename Printer >
std::ostream & operator<<( std::ostream &,
RangePrinter<FwdIter, Printer> const& );
template< typename FwdIter, typename Printer=DefaultPrinter >
class RangePrinter
{
FwdIter begin;
FwdIter end;
std::string delim;
std::string open;
std::string close;
Printer printer;
friend std::ostream& operator<< <>( std::ostream&,
RangePrinter<FwdIter,Printer> const& );
public:
RangePrinter( FwdIter b, FwdIter e, Printer p,
std::string const& d, std::string const & o, std::string const& c )
: begin( b ), end( e ), printer( p ), open( o ), close( c )
{
}
// with no "printer" variable
RangePrinter( FwdIter b, FwdIter e,
std::string const& d, std::string const & o, std::string const& c )
: begin( b ), end( e ), open( o ), close( c )
{
}
};
template<typename FwdIter, typename Printer>
std::ostream& operator<<( std::ostream& os,
RangePrinter<FwdIter, Printer> const& range )
{
const Printer & printer = range.printer;
os << range.open;
FwdIter begin = range.begin, end = range.end;
// print the first item
if (begin == end)
{
return os << range.close;
}
printer( os, *begin );
// print the rest with delim as a prefix
for( ++begin; begin != end; ++begin )
{
os << range.delim;
printer( os, *begin );
}
return os << range.close;
}
现在默认它只适用于地图,只要键和值类型都是可打印的,你可以放入你自己的特殊项目打印机,当它们不是(你可以使用任何其他类型),或者如果你不希望=作为分隔符。
我正在移动自由函数来创建它们到现在为止:
自由函数(迭代器版本)看起来像这样,你甚至可能有默认值:
template<typename Collection>
RangePrinter<typename Collection::const_iterator> rangePrinter
( const Collection& coll, const char * delim=",",
const char * open="[", const char * close="]")
{
return RangePrinter< typename Collection::const_iterator >
( coll.begin(), coll.end(), delim, open, close );
}
然后你可以将它用于std :: set by
std::cout << outputFormatter( mySet );
您还可以编写采用自定义打印机的自由功能版本和采用两个迭代器的自由功能版本。在任何情况下,他们都会为您解析模板参数,并且您可以将它们作为临时文件传递。
答案 2 :(得分:15)
这是一个工作库,作为一个完整的工作程序呈现,我刚刚一起入侵:
#include <set>
#include <vector>
#include <iostream>
#include <boost/utility/enable_if.hpp>
// Default delimiters
template <class C> struct Delims { static const char *delim[3]; };
template <class C> const char *Delims<C>::delim[3]={"[", ", ", "]"};
// Special delimiters for sets.
template <typename T> struct Delims< std::set<T> > { static const char *delim[3]; };
template <typename T> const char *Delims< std::set<T> >::delim[3]={"{", ", ", "}"};
template <class C> struct IsContainer { enum { value = false }; };
template <typename T> struct IsContainer< std::vector<T> > { enum { value = true }; };
template <typename T> struct IsContainer< std::set<T> > { enum { value = true }; };
template <class C>
typename boost::enable_if<IsContainer<C>, std::ostream&>::type
operator<<(std::ostream & o, const C & x)
{
o << Delims<C>::delim[0];
for (typename C::const_iterator i = x.begin(); i != x.end(); ++i)
{
if (i != x.begin()) o << Delims<C>::delim[1];
o << *i;
}
o << Delims<C>::delim[2];
return o;
}
template <typename T> struct IsChar { enum { value = false }; };
template <> struct IsChar<char> { enum { value = true }; };
template <typename T, int N>
typename boost::disable_if<IsChar<T>, std::ostream&>::type
operator<<(std::ostream & o, const T (&x)[N])
{
o << "[";
for (int i = 0; i != N; ++i)
{
if (i) o << ",";
o << x[i];
}
o << "]";
return o;
}
int main()
{
std::vector<int> i;
i.push_back(23);
i.push_back(34);
std::set<std::string> j;
j.insert("hello");
j.insert("world");
double k[] = { 1.1, 2.2, M_PI, -1.0/123.0 };
std::cout << i << "\n" << j << "\n" << k << "\n";
}
目前仅适用于vector
和set
,但只需扩展IsContainer
专精,即可与大多数容器配合使用。我没有想过这段代码是否是最小的,但我不能立即想到任何我可以删除的冗余。
编辑:仅仅为了踢,我包含了一个处理数组的版本。我不得不排除char数组以避免进一步的模糊;它可能仍会遇到wchar_t[]
。
答案 3 :(得分:6)
这些代码现在被证明是有用的了几次,我觉得进入自定义的费用非常低。因此,我决定在 MIT 许可下发布它,并提供一个GitHub存储库,其中可以下载标题和一个小示例文件。
就此答案而言,'装饰'是一组前缀字符串,分隔符字符串和后缀字符串。 前缀字符串插入到流之前和后缀字符串之后的容器值(请参阅2.目标容器)。 分隔符字符串插入相应容器的值之间。
注意:实际上,这个答案没有解决100%的问题,因为装饰不是严格编译的时间常量,因为需要运行时检查来检查是否已将自定义装饰应用于当前流。 不过,我认为它有一些不错的功能。
注意2:可能有小错误,因为它尚未经过充分测试。
要保持简单
#include <vector>
#include "pretty.h"
int main()
{
std::cout << std::vector<int>{1,2,3,4,5}; // prints 1, 2, 3, 4, 5
return 0;
}
...关于特定的流对象
#include <vector>
#include "pretty.h"
int main()
{
// set decoration for std::vector<int> for cout object
std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
return 0;
}
或关于所有流:
#include <vector>
#include "pretty.h"
// set decoration for std::vector<int> for all ostream objects
PRETTY_DEFAULT_DECORATION(std::vector<int>, "{", ", ", "}")
int main()
{
std::cout << std::vector<int>{1,2,3,4,5}; // prints {1, 2, 3, 4, 5}
std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
return 0;
}
ios_base
使用xalloc
/ pword
提供的私有存储空间,以便保存指向特定装饰特定流上某个类型的pretty::decor
对象的指针。 如果未设置此流的pretty::decor<T>
对象,则会调用pretty::defaulted<T, charT, chartraitT>::decoration()
以获取给定类型的默认装饰。
类pretty::defaulted
将专门用于自定义默认装饰。
此代码的'漂亮装饰'的目标对象obj
是具有
std::begin
和std::end
已定义(包括C样式数组),begin(obj)
和end(obj)
,std::tuple
std::pair
。该代码包含一个特征,用于识别具有范围特征的类(begin
/ end
)。
(但是没有包括检查,begin(obj) == end(obj)
是否是有效的表达式。)
代码在全局命名空间中提供operator<<
,仅适用于没有更专业版operator<<
可用的类。
因此,例如std::string
不会使用此代码中的运算符打印,尽管具有有效的begin
/ end
对。
可以为每种类型(不同的tuple
s)和流(不是流类型!)单独强加装饰。
(即,std::vector<int>
可以为不同的流对象提供不同的装饰。)
默认前缀为""
(无),默认后缀为默认前缀,默认分隔符为", "
(逗号+空格)。
pretty::defaulted
类模板 struct defaulted
有一个静态成员函数decoration()
,返回一个decor
对象,其中包含给定类型的默认值。
自定义默认阵列打印:
namespace pretty
{
template<class T, std::size_t N>
struct defaulted<T[N]>
{
static decor<T[N]> decoration()
{
return{ { "(" }, { ":" }, { ")" } };
}
};
}
打印arry数组:
float e[5] = { 3.4f, 4.3f, 5.2f, 1.1f, 22.2f };
std::cout << e << '\n'; // prints (3.4:4.3:5.2:1.1:22.2)
PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...)
流char
宏
宏扩展为
namespace pretty {
template< __VA_ARGS__ >
struct defaulted< TYPE > {
static decor< TYPE > decoration() {
return { PREFIX, DELIM, POSTFIX };
}
};
}
将上述部分专业化重写为
PRETTY_DEFAULT_DECORATION(T[N], "", ";", "", class T, std::size_t N)
或插入完整的专业化,如
PRETTY_DEFAULT_DECORATION(std::vector<int>, "(", ", ", ")")
包含wchar_t
个流的另一个宏:PRETTY_DEFAULT_WDECORATION
。
函数pretty::decoration
用于在某个流上强加装饰。
还有超载
- 一个字符串参数是分隔符(从默认类中采用前缀和后缀)
- 或组装完整装饰的三个字符串参数
float e[3] = { 3.4f, 4.3f, 5.2f };
std::stringstream u;
// add { ; } decoration to u
u << pretty::decoration<float[3]>("{", "; ", "}");
// use { ; } decoration
u << e << '\n'; // prints {3.4; 4.3; 5.2}
// uses decoration returned by defaulted<float[3]>::decoration()
std::cout << e; // prints 3.4, 4.3, 5.2
PRETTY_DEFAULT_DECORATION(float[3], "{{{", ",", "}}}")
std::stringstream v;
v << e; // prints {{{3.4,4.3,5.2}}}
v << pretty::decoration<float[3]>(":");
v << e; // prints {{{3.4:4.3:5.2}}}
v << pretty::decoration<float[3]>("((", "=", "))");
v << e; // prints ((3.4=4.3=5.2))
std::tuple
此代码不是允许对每个可能的元组类型进行专门化,而是将std::tuple<void*>
可用的任何装饰应用于所有类型的std::tuple<...>
。
要返回给定类型的默认装饰,请使用流pretty::clear
上的s
功能模板。
s << pretty::clear<std::vector<int>>();
使用换行符分隔符打印“矩阵式”
std::vector<std::vector<int>> m{ {1,2,3}, {4,5,6}, {7,8,9} };
std::cout << pretty::decoration<std::vector<std::vector<int>>>("\n");
std::cout << m;
打印
1, 2, 3
4, 5, 6
7, 8, 9
#ifndef pretty_print_0x57547_sa4884X_0_1_h_guard_
#define pretty_print_0x57547_sa4884X_0_1_h_guard_
#include <string>
#include <iostream>
#include <type_traits>
#include <iterator>
#include <utility>
#define PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
namespace pretty { template< __VA_ARGS__ >\
struct defaulted< TYPE > {\
static decor< TYPE > decoration(){\
return { PREFIX, DELIM, POSTFIX };\
} /*decoration*/ }; /*defaulted*/} /*pretty*/
#define PRETTY_DEFAULT_WDECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
namespace pretty { template< __VA_ARGS__ >\
struct defaulted< TYPE, wchar_t, std::char_traits<wchar_t> > {\
static decor< TYPE, wchar_t, std::char_traits<wchar_t> > decoration(){\
return { PREFIX, DELIM, POSTFIX };\
} /*decoration*/ }; /*defaulted*/} /*pretty*/
namespace pretty
{
namespace detail
{
// drag in begin and end overloads
using std::begin;
using std::end;
// helper template
template <int I> using _ol = std::integral_constant<int, I>*;
// SFINAE check whether T is a range with begin/end
template<class T>
class is_range
{
// helper function declarations using expression sfinae
template <class U, _ol<0> = nullptr>
static std::false_type b(...);
template <class U, _ol<1> = nullptr>
static auto b(U &v) -> decltype(begin(v), std::true_type());
template <class U, _ol<0> = nullptr>
static std::false_type e(...);
template <class U, _ol<1> = nullptr>
static auto e(U &v) -> decltype(end(v), std::true_type());
// return types
using b_return = decltype(b<T>(std::declval<T&>()));
using e_return = decltype(e<T>(std::declval<T&>()));
public:
static const bool value = b_return::value && e_return::value;
};
}
// holder class for data
template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
struct decor
{
static const int xindex;
std::basic_string<CharT, TraitT> prefix, delimiter, postfix;
decor(std::basic_string<CharT, TraitT> const & pre = "",
std::basic_string<CharT, TraitT> const & delim = "",
std::basic_string<CharT, TraitT> const & post = "")
: prefix(pre), delimiter(delim), postfix(post) {}
};
template<class T, class charT, class traits>
int const decor<T, charT, traits>::xindex = std::ios_base::xalloc();
namespace detail
{
template<class T, class CharT, class TraitT>
void manage_decor(std::ios_base::event evt, std::ios_base &s, int const idx)
{
using deco_type = decor<T, CharT, TraitT>;
if (evt == std::ios_base::erase_event)
{ // erase deco
void const * const p = s.pword(idx);
if (p)
{
delete static_cast<deco_type const * const>(p);
s.pword(idx) = nullptr;
}
}
else if (evt == std::ios_base::copyfmt_event)
{ // copy deco
void const * const p = s.pword(idx);
if (p)
{
auto np = new deco_type{ *static_cast<deco_type const * const>(p) };
s.pword(idx) = static_cast<void*>(np);
}
}
}
template<class T> struct clearer {};
template<class T, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT>& operator<< (
std::basic_ostream<CharT, TraitT> &s, clearer<T> const &)
{
using deco_type = decor<T, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
if (p)
{ // delete if set
delete static_cast<deco_type const *>(p);
s.pword(deco_type::xindex) = nullptr;
}
return s;
}
template <class CharT>
struct default_data { static const CharT * decor[3]; };
template <>
const char * default_data<char>::decor[3] = { "", ", ", "" };
template <>
const wchar_t * default_data<wchar_t>::decor[3] = { L"", L", ", L"" };
}
// Clear decoration for T
template<class T>
detail::clearer<T> clear() { return{}; }
template<class T, class CharT, class TraitT>
void clear(std::basic_ostream<CharT, TraitT> &s) { s << detail::clearer<T>{}; }
// impose decoration on ostream
template<class T, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT>& operator<<(
std::basic_ostream<CharT, TraitT> &s, decor<T, CharT, TraitT> && h)
{
using deco_type = decor<T, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
// delete if already set
if (p) delete static_cast<deco_type const *>(p);
s.pword(deco_type::xindex) = static_cast<void *>(new deco_type{ std::move(h) });
// check whether we alread have a callback registered
if (s.iword(deco_type::xindex) == 0)
{ // if this is not the case register callback and set iword
s.register_callback(detail::manage_decor<T, CharT, TraitT>, deco_type::xindex);
s.iword(deco_type::xindex) = 1;
}
return s;
}
template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
struct defaulted
{
static inline decor<T, CharT, TraitT> decoration()
{
return{ detail::default_data<CharT>::decor[0],
detail::default_data<CharT>::decor[1],
detail::default_data<CharT>::decor[2] };
}
};
template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
decor<T, CharT, TraitT> decoration(
std::basic_string<CharT, TraitT> const & prefix,
std::basic_string<CharT, TraitT> const & delimiter,
std::basic_string<CharT, TraitT> const & postfix)
{
return{ prefix, delimiter, postfix };
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
decor<T, CharT, TraitT> decoration(
std::basic_string<CharT, TraitT> const & delimiter)
{
using str_type = std::basic_string<CharT, TraitT>;
return{ defaulted<T, CharT, TraitT>::decoration().prefix,
delimiter, defaulted<T, CharT, TraitT>::decoration().postfix };
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
decor<T, CharT, TraitT> decoration(CharT const * const prefix,
CharT const * const delimiter, CharT const * const postfix)
{
using str_type = std::basic_string<CharT, TraitT>;
return{ str_type{ prefix }, str_type{ delimiter }, str_type{ postfix } };
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
decor<T, CharT, TraitT> decoration(CharT const * const delimiter)
{
using str_type = std::basic_string<CharT, TraitT>;
return{ defaulted<T, CharT, TraitT>::decoration().prefix,
str_type{ delimiter }, defaulted<T, CharT, TraitT>::decoration().postfix };
}
template<typename T, std::size_t N, std::size_t L>
struct tuple
{
template<class CharT, class TraitT>
static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
std::basic_string<CharT, TraitT> const &delimiter)
{
s << std::get<N>(value) << delimiter;
tuple<T, N + 1, L>::print(s, value, delimiter);
}
};
template<typename T, std::size_t N>
struct tuple<T, N, N>
{
template<class CharT, class TraitT>
static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
std::basic_string<CharT, TraitT> const &) {
s << std::get<N>(value);
}
};
}
template<class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
std::basic_ostream<CharT, TraitT> &s, std::tuple<> const & v)
{
using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
auto const d = static_cast<deco_type const * const>(p);
s << (d ? d->prefix : defaulted_type::decoration().prefix);
s << (d ? d->postfix : defaulted_type::decoration().postfix);
return s;
}
template<class CharT, class TraitT, class ... T>
std::basic_ostream<CharT, TraitT> & operator<< (
std::basic_ostream<CharT, TraitT> &s, std::tuple<T...> const & v)
{
using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
using pretty_tuple = pretty::tuple<std::tuple<T...>, 0U, sizeof...(T)-1U>;
void const * const p = s.pword(deco_type::xindex);
auto const d = static_cast<deco_type const * const>(p);
s << (d ? d->prefix : defaulted_type::decoration().prefix);
pretty_tuple::print(s, v, d ? d->delimiter :
defaulted_type::decoration().delimiter);
s << (d ? d->postfix : defaulted_type::decoration().postfix);
return s;
}
template<class T, class U, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
std::basic_ostream<CharT, TraitT> &s, std::pair<T, U> const & v)
{
using deco_type = pretty::decor<std::pair<T, U>, CharT, TraitT>;
using defaulted_type = pretty::defaulted<std::pair<T, U>, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
auto const d = static_cast<deco_type const * const>(p);
s << (d ? d->prefix : defaulted_type::decoration().prefix);
s << v.first;
s << (d ? d->delimiter : defaulted_type::decoration().delimiter);
s << v.second;
s << (d ? d->postfix : defaulted_type::decoration().postfix);
return s;
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
typename std::enable_if < pretty::detail::is_range<T>::value,
std::basic_ostream < CharT, TraitT >> ::type & operator<< (
std::basic_ostream<CharT, TraitT> &s, T const & v)
{
bool first(true);
using deco_type = pretty::decor<T, CharT, TraitT>;
using default_type = pretty::defaulted<T, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
auto d = static_cast<pretty::decor<T, CharT, TraitT> const * const>(p);
s << (d ? d->prefix : default_type::decoration().prefix);
for (auto const & e : v)
{ // v is range thus range based for works
if (!first) s << (d ? d->delimiter : default_type::decoration().delimiter);
s << e;
first = false;
}
s << (d ? d->postfix : default_type::decoration().postfix);
return s;
}
#endif // pretty_print_0x57547_sa4884X_0_1_h_guard_
答案 4 :(得分:4)
我将在这里添加另一个答案,因为我已经提出了与前一个方法不同的方法,那就是使用区域设置方面。
基础知识为here
基本上你做的是:
std::locale::facet
的类。稍微缺点是你需要一个编译单元来保存它的id。我们称之为MyPrettyVectorPrinter。你可能会给它一个更好的名字,并为对和地图创建一个。std::has_facet< MyPrettyVectorPrinter >
std::use_facet< MyPrettyVectorPrinter >( os.getloc() )
operator<<
)会提供默认构面。请注意,您可以对读取矢量执行相同的操作。我喜欢这种方法,因为您可以使用默认打印,同时仍然可以使用自定义覆盖。
如果在多个项目中使用(例如,不仅仅是标题),还需要知道创建新语言环境对象的费用这一事实,缺点是需要一个库。
我把它写成一个新的解决方案,而不是修改我的另一个,因为我相信这两种方法都是正确的,你可以选择。
答案 5 :(得分:3)
您可以使用the {fmt} library格式化容器以及范围和元组。例如:
#include <vector>
#include <fmt/ranges.h>
int main() {
auto v = std::vector<int>{1, 2, 3};
fmt::print("{}", v);
}
打印
{1, 2, 3}
到stdout
。
免责声明:我是{fmt}的作者。
答案 6 :(得分:1)
答案 7 :(得分:1)
这里的目标是使用ADL来定制我们如何打印。
传入格式化程序标记,并覆盖标记命名空间中的4个函数(之前,之后,之间和之后)。这会改变格式化程序在迭代容器时打印“装饰”的方式。
默认格式化工具,其中{(a->b),(c->d)}
用于地图,(a,b,c)
用于元组,"hello"
用于字符串,[x,y,z]
用于其他所有内容。
它应该“正常工作”第三方可迭代类型(并将它们视为“其他所有”)。
如果您想要第三方迭代的自定义装饰,只需创建自己的标签即可。处理地图下降需要一些工作(您需要重载pretty_print_descend( your_tag
以返回pretty_print::decorator::map_magic_tag<your_tag>
)。也许有一种更清洁的方法可以做到这一点,不确定。
一个用于检测迭代性的小库,以及元组:
namespace details {
using std::begin; using std::end;
template<class T, class=void>
struct is_iterable_test:std::false_type{};
template<class T>
struct is_iterable_test<T,
decltype((void)(
(void)(begin(std::declval<T>())==end(std::declval<T>()))
, ((void)(std::next(begin(std::declval<T>()))))
, ((void)(*begin(std::declval<T>())))
, 1
))
>:std::true_type{};
template<class T>struct is_tupleoid:std::false_type{};
template<class...Ts>struct is_tupleoid<std::tuple<Ts...>>:std::true_type{};
template<class...Ts>struct is_tupleoid<std::pair<Ts...>>:std::true_type{};
// template<class T, size_t N>struct is_tupleoid<std::array<T,N>>:std::true_type{}; // complete, but problematic
}
template<class T>struct is_iterable:details::is_iterable_test<std::decay_t<T>>{};
template<class T, std::size_t N>struct is_iterable<T(&)[N]>:std::true_type{}; // bypass decay
template<class T>struct is_tupleoid:details::is_tupleoid<std::decay_t<T>>{};
template<class T>struct is_visitable:std::integral_constant<bool, is_iterable<T>{}||is_tupleoid<T>{}> {};
允许我们访问可迭代或元组类型对象的内容的库:
template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_first(C&& c, F&& f) {
using std::begin; using std::end;
auto&& b = begin(c);
auto&& e = end(c);
if (b==e)
return;
std::forward<F>(f)(*b);
}
template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_all_but_first(C&& c, F&& f) {
using std::begin; using std::end;
auto it = begin(c);
auto&& e = end(c);
if (it==e)
return;
it = std::next(it);
for( ; it!=e; it = std::next(it) ) {
f(*it);
}
}
namespace details {
template<class Tup, class F>
void visit_first( std::index_sequence<>, Tup&&, F&& ) {}
template<size_t... Is, class Tup, class F>
void visit_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
std::forward<F>(f)( std::get<0>( std::forward<Tup>(tup) ) );
}
template<class Tup, class F>
void visit_all_but_first( std::index_sequence<>, Tup&&, F&& ) {}
template<size_t... Is,class Tup, class F>
void visit_all_but_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
int unused[] = {0,((void)(
f( std::get<Is>(std::forward<Tup>(tup)) )
),0)...};
(void)(unused);
}
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_first(Tup&& tup, F&& f) {
details::visit_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_all_but_first(Tup&& tup, F&& f) {
details::visit_all_but_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}
一个漂亮的打印库:
namespace pretty_print {
namespace decorator {
struct default_tag {};
template<class Old>
struct map_magic_tag:Old {}; // magic for maps
// Maps get {}s. Write trait `is_associative` to generalize:
template<class CharT, class Traits, class...Xs >
void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
s << CharT('{');
}
template<class CharT, class Traits, class...Xs >
void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
s << CharT('}');
}
// tuples and pairs get ():
template<class CharT, class Traits, class Tup >
std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
s << CharT('(');
}
template<class CharT, class Traits, class Tup >
std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
s << CharT(')');
}
// strings with the same character type get ""s:
template<class CharT, class Traits, class...Xs >
void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
s << CharT('"');
}
template<class CharT, class Traits, class...Xs >
void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
s << CharT('"');
}
// and pack the characters together:
template<class CharT, class Traits, class...Xs >
void pretty_print_between( default_tag, std::basic_ostream<CharT, Traits>&, std::basic_string<CharT, Xs...> const& ) {}
// map magic. When iterating over the contents of a map, use the map_magic_tag:
template<class...Xs>
map_magic_tag<default_tag> pretty_print_descend( default_tag, std::map<Xs...> const& ) {
return {};
}
template<class old_tag, class C>
old_tag pretty_print_descend( map_magic_tag<old_tag>, C const& ) {
return {};
}
// When printing a pair immediately within a map, use -> as a separator:
template<class old_tag, class CharT, class Traits, class...Xs >
void pretty_print_between( map_magic_tag<old_tag>, std::basic_ostream<CharT, Traits>& s, std::pair<Xs...> const& ) {
s << CharT('-') << CharT('>');
}
}
// default behavior:
template<class CharT, class Traits, class Tag, class Container >
void pretty_print_before( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
s << CharT('[');
}
template<class CharT, class Traits, class Tag, class Container >
void pretty_print_after( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
s << CharT(']');
}
template<class CharT, class Traits, class Tag, class Container >
void pretty_print_between( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
s << CharT(',');
}
template<class Tag, class Container>
Tag&& pretty_print_descend( Tag&& tag, Container const& ) {
return std::forward<Tag>(tag);
}
// print things by default by using <<:
template<class Tag=decorator::default_tag, class Scalar, class CharT, class Traits>
std::enable_if_t<!is_visitable<Scalar>{}> print( std::basic_ostream<CharT, Traits>& os, Scalar&& scalar, Tag&&=Tag{} ) {
os << std::forward<Scalar>(scalar);
}
// for anything visitable (see above), use the pretty print algorithm:
template<class Tag=decorator::default_tag, class C, class CharT, class Traits>
std::enable_if_t<is_visitable<C>{}> print( std::basic_ostream<CharT, Traits>& os, C&& c, Tag&& tag=Tag{} ) {
pretty_print_before( std::forward<Tag>(tag), os, std::forward<C>(c) );
visit_first( c, [&](auto&& elem) {
print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
});
visit_all_but_first( c, [&](auto&& elem) {
pretty_print_between( std::forward<Tag>(tag), os, std::forward<C>(c) );
print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
});
pretty_print_after( std::forward<Tag>(tag), os, std::forward<C>(c) );
}
}
测试代码:
int main() {
std::vector<int> x = {1,2,3};
pretty_print::print( std::cout, x );
std::cout << "\n";
std::map< std::string, int > m;
m["hello"] = 3;
m["world"] = 42;
pretty_print::print( std::cout, m );
std::cout << "\n";
}
这确实使用了C ++ 14特性(一些_t
别名和auto&&
lambdas),但没有一个是必需的。
答案 8 :(得分:1)
我和第一个BoostCon之一(现在称为CppCon)出来后,我和另外两个在库中工作。主要的症结是需要扩展命名空间std。事实证明,对于Boost库来说是不行的。
不幸的是,与代码的链接不再起作用,但是您可能在讨论中发现了一些有趣的花絮(至少那些没有在谈论其名字的花絮!)
http://boost.2283326.n4.nabble.com/explore-Library-Proposal-Container-Streaming-td2619544.html
答案 9 :(得分:1)
这是我在2016年完成的版本
所有内容都在一个标头中,因此易于使用 https://github.com/skident/eos/blob/master/include/eos/io/print.hpp
/*! \file print.hpp
* \brief Useful functions for work with STL containers.
*
* Now it supports generic print for STL containers like: [elem1, elem2, elem3]
* Supported STL conrainers: vector, deque, list, set multiset, unordered_set,
* map, multimap, unordered_map, array
*
* \author Skident
* \date 02.09.2016
* \copyright Skident Inc.
*/
#pragma once
// check is the C++11 or greater available (special hack for MSVC)
#if (defined(_MSC_VER) && __cplusplus >= 199711L) || __cplusplus >= 201103L
#define MODERN_CPP_AVAILABLE 1
#endif
#include <iostream>
#include <sstream>
#include <vector>
#include <deque>
#include <set>
#include <list>
#include <map>
#include <cctype>
#ifdef MODERN_CPP_AVAILABLE
#include <array>
#include <unordered_set>
#include <unordered_map>
#include <forward_list>
#endif
#define dump(value) std::cout << (#value) << ": " << (value) << std::endl
#define BUILD_CONTENT \
std::stringstream ss; \
for (; it != collection.end(); ++it) \
{ \
ss << *it << elem_separator; \
} \
#define BUILD_MAP_CONTENT \
std::stringstream ss; \
for (; it != collection.end(); ++it) \
{ \
ss << it->first \
<< keyval_separator \
<< it->second \
<< elem_separator; \
} \
#define COMPILE_CONTENT \
std::string data = ss.str(); \
if (!data.empty() && !elem_separator.empty()) \
data = data.substr(0, data.rfind(elem_separator)); \
std::string result = first_bracket + data + last_bracket; \
os << result; \
if (needEndl) \
os << std::endl; \
////
///
///
/// Template definitions
///
///
//generic template for classes: deque, list, forward_list, vector
#define VECTOR_AND_CO_TEMPLATE \
template< \
template<class T, \
class Alloc = std::allocator<T> > \
class Container, class Type, class Alloc> \
#define SET_TEMPLATE \
template< \
template<class T, \
class Compare = std::less<T>, \
class Alloc = std::allocator<T> > \
class Container, class T, class Compare, class Alloc> \
#define USET_TEMPLATE \
template< \
template < class Key, \
class Hash = std::hash<Key>, \
class Pred = std::equal_to<Key>, \
class Alloc = std::allocator<Key> \
> \
class Container, class Key, class Hash, class Pred, class Alloc \
> \
#define MAP_TEMPLATE \
template< \
template<class Key, \
class T, \
class Compare = std::less<Key>, \
class Alloc = std::allocator<std::pair<const Key,T> > \
> \
class Container, class Key, \
class Value/*, class Compare, class Alloc*/> \
#define UMAP_TEMPLATE \
template< \
template<class Key, \
class T, \
class Hash = std::hash<Key>, \
class Pred = std::equal_to<Key>, \
class Alloc = std::allocator<std::pair<const Key,T> >\
> \
class Container, class Key, class Value, \
class Hash, class Pred, class Alloc \
> \
#define ARRAY_TEMPLATE \
template< \
template<class T, std::size_t N> \
class Array, class Type, std::size_t Size> \
namespace eos
{
static const std::string default_elem_separator = ", ";
static const std::string default_keyval_separator = " => ";
static const std::string default_first_bracket = "[";
static const std::string default_last_bracket = "]";
//! Prints template Container<T> as in Python
//! Supported containers: vector, deque, list, set, unordered_set(C++11), forward_list(C++11)
//! \param collection which should be printed
//! \param elem_separator the separator which will be inserted between elements of collection
//! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
//! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
template<class Container>
void print( const Container& collection
, const std::string& elem_separator = default_elem_separator
, const std::string& first_bracket = default_first_bracket
, const std::string& last_bracket = default_last_bracket
, std::ostream& os = std::cout
, bool needEndl = true
)
{
typename Container::const_iterator it = collection.begin();
BUILD_CONTENT
COMPILE_CONTENT
}
//! Prints collections with one template argument and allocator as in Python.
//! Supported standard collections: vector, deque, list, forward_list
//! \param collection which should be printed
//! \param elem_separator the separator which will be inserted between elements of collection
//! \param keyval_separator separator between key and value of map. For default it is the '=>'
//! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
//! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
VECTOR_AND_CO_TEMPLATE
void print( const Container<Type>& collection
, const std::string& elem_separator = default_elem_separator
, const std::string& first_bracket = default_first_bracket
, const std::string& last_bracket = default_last_bracket
, std::ostream& os = std::cout
, bool needEndl = true
)
{
typename Container<Type>::const_iterator it = collection.begin();
BUILD_CONTENT
COMPILE_CONTENT
}
//! Prints collections like std:set<T, Compare, Alloc> as in Python
//! \param collection which should be printed
//! \param elem_separator the separator which will be inserted between elements of collection
//! \param keyval_separator separator between key and value of map. For default it is the '=>'
//! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
//! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
SET_TEMPLATE
void print( const Container<T, Compare, Alloc>& collection
, const std::string& elem_separator = default_elem_separator
, const std::string& first_bracket = default_first_bracket
, const std::string& last_bracket = default_last_bracket
, std::ostream& os = std::cout
, bool needEndl = true
)
{
typename Container<T, Compare, Alloc>::const_iterator it = collection.begin();
BUILD_CONTENT
COMPILE_CONTENT
}
//! Prints collections like std:unordered_set<Key, Hash, Pred, Alloc> as in Python
//! \param collection which should be printed
//! \param elem_separator the separator which will be inserted between elements of collection
//! \param keyval_separator separator between key and value of map. For default it is the '=>'
//! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
//! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
USET_TEMPLATE
void print( const Container<Key, Hash, Pred, Alloc>& collection
, const std::string& elem_separator = default_elem_separator
, const std::string& first_bracket = default_first_bracket
, const std::string& last_bracket = default_last_bracket
, std::ostream& os = std::cout
, bool needEndl = true
)
{
typename Container<Key, Hash, Pred, Alloc>::const_iterator it = collection.begin();
BUILD_CONTENT
COMPILE_CONTENT
}
//! Prints collections like std:map<T, U> as in Python
//! supports generic objects of std: map, multimap
//! \param collection which should be printed
//! \param elem_separator the separator which will be inserted between elements of collection
//! \param keyval_separator separator between key and value of map. For default it is the '=>'
//! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
//! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
MAP_TEMPLATE
void print( const Container<Key, Value>& collection
, const std::string& elem_separator = default_elem_separator
, const std::string& keyval_separator = default_keyval_separator
, const std::string& first_bracket = default_first_bracket
, const std::string& last_bracket = default_last_bracket
, std::ostream& os = std::cout
, bool needEndl = true
)
{
typename Container<Key, Value>::const_iterator it = collection.begin();
BUILD_MAP_CONTENT
COMPILE_CONTENT
}
//! Prints classes like std:unordered_map as in Python
//! \param collection which should be printed
//! \param elem_separator the separator which will be inserted between elements of collection
//! \param keyval_separator separator between key and value of map. For default it is the '=>'
//! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
//! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
UMAP_TEMPLATE
void print( const Container<Key, Value, Hash, Pred, Alloc>& collection
, const std::string& elem_separator = default_elem_separator
, const std::string& keyval_separator = default_keyval_separator
, const std::string& first_bracket = default_first_bracket
, const std::string& last_bracket = default_last_bracket
, std::ostream& os = std::cout
, bool needEndl = true
)
{
typename Container<Key, Value, Hash, Pred, Alloc>::const_iterator it = collection.begin();
BUILD_MAP_CONTENT
COMPILE_CONTENT
}
//! Prints collections like std:array<T, Size> as in Python
//! \param collection which should be printed
//! \param elem_separator the separator which will be inserted between elements of collection
//! \param keyval_separator separator between key and value of map. For default it is the '=>'
//! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
//! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
ARRAY_TEMPLATE
void print( const Array<Type, Size>& collection
, const std::string& elem_separator = default_elem_separator
, const std::string& first_bracket = default_first_bracket
, const std::string& last_bracket = default_last_bracket
, std::ostream& os = std::cout
, bool needEndl = true
)
{
typename Array<Type, Size>::const_iterator it = collection.begin();
BUILD_CONTENT
COMPILE_CONTENT
}
//! Removes all whitespaces before data in string.
//! \param str string with data
//! \return string without whitespaces in left part
std::string ltrim(const std::string& str);
//! Removes all whitespaces after data in string
//! \param str string with data
//! \return string without whitespaces in right part
std::string rtrim(const std::string& str);
//! Removes all whitespaces before and after data in string
//! \param str string with data
//! \return string without whitespaces before and after data in string
std::string trim(const std::string& str);
////////////////////////////////////////////////////////////
////////////////////////ostream logic//////////////////////
/// Should be specified for concrete containers
/// because of another types can be suitable
/// for templates, for example templates break
/// the code like this "cout << string("hello") << endl;"
////////////////////////////////////////////////////////////
#define PROCESS_VALUE_COLLECTION(os, collection) \
print( collection, \
default_elem_separator, \
default_first_bracket, \
default_last_bracket, \
os, \
false \
); \
#define PROCESS_KEY_VALUE_COLLECTION(os, collection) \
print( collection, \
default_elem_separator, \
default_keyval_separator, \
default_first_bracket, \
default_last_bracket, \
os, \
false \
); \
///< specialization for vector
template<class T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
///< specialization for deque
template<class T>
std::ostream& operator<<(std::ostream& os, const std::deque<T>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
///< specialization for list
template<class T>
std::ostream& operator<<(std::ostream& os, const std::list<T>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
///< specialization for set
template<class T>
std::ostream& operator<<(std::ostream& os, const std::set<T>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
///< specialization for multiset
template<class T>
std::ostream& operator<<(std::ostream& os, const std::multiset<T>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
#ifdef MODERN_CPP_AVAILABLE
///< specialization for unordered_map
template<class T>
std::ostream& operator<<(std::ostream& os, const std::unordered_set<T>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
///< specialization for forward_list
template<class T>
std::ostream& operator<<(std::ostream& os, const std::forward_list<T>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
///< specialization for array
template<class T, std::size_t N>
std::ostream& operator<<(std::ostream& os, const std::array<T, N>& collection)
{
PROCESS_VALUE_COLLECTION(os, collection)
return os;
}
#endif
///< specialization for map, multimap
MAP_TEMPLATE
std::ostream& operator<<(std::ostream& os, const Container<Key, Value>& collection)
{
PROCESS_KEY_VALUE_COLLECTION(os, collection)
return os;
}
///< specialization for unordered_map
UMAP_TEMPLATE
std::ostream& operator<<(std::ostream& os, const Container<Key, Value, Hash, Pred, Alloc>& collection)
{
PROCESS_KEY_VALUE_COLLECTION(os, collection)
return os;
}
}