我有超过1000行的pandas数据框,看起来有点像这样:
Copy name type ntv
G1 BA X 0.45
G1 BB X 0.878
G1 C Z 0.19
G1 LA1 Y 1.234
G1 L Y 0.09
G1 LB Y 1.056
F2 BA1 X -7.890
F2 BB X 2.345
F2 MA Y -0.871
F2 LB1 Y 0.737
在上面的示例(df1)中,有两组'复制'列,G1和F2,具有各种名称,以及X,Y和Z三种类型。
我想创建另一个看起来像下面的数据框(df2),它们以X-Y或Z-Y的形式组合在一起。
Model ntv_1 ntv_2
G1BA-LA1 0.45 1.234
G1BB-LB 0.878 1.056
G1C-L 0.19 0.09
F2BA1-MA -7.890 -0.871
F2BB-LB1 2.345 0.737
对于组X-Y,他们的共同点是df1 [' name']的第二个字符。所以,我决定这样做:
c = df1[(df1['name'].str[0]=='B' & (df1['ntv'] != 0.0)]
h = df1[((df1['name'].str[0]=='L')|(df1['name'].str[0]=='M')) & (df['ntv'] != 0.0)]
b = (c.loc[:,c['name'].str[1]] == h.loc[:,h['name'].str[1]]).groupby('Copy')
df2['Model'] = c['Copy'].astype(str) + c['name'].astype(str) + '-' + h['name'].astype(str)
df2['ntv_1'] = c['ntv']
df2['ntv_2'] = h['ntv']
我收到了KeyError消息。所以我决定这样做:
ca = c['name'].str[1].dropna()
ha = h['name'].str[1].dropna()
if ca == ha:
df2['Model'] = c['Copy'].astype(str) + c['name'].astype(str) + '-' + h['name'].astype(str)
df2['ntv_1'] = c['ntv']
df2['ntv_2'] = h['ntv']
但是我得到了一个ValueError:"系列长度必须匹配才能比较。"
请问如何将数据帧分组为X-Y或Z-Y形式?提前谢谢!
答案 0 :(得分:1)
问题0
和c
未对齐,因为不同的索引和可能的不同长度:
h
#added condition for remove all rows with no second value in name
c = df1[(df1['name'].str[0]=='B') & (df1['ntv'] != 0.0) &
(df1['name'].str[1].notnull())].copy()
#created MultiIndex for align with Counter duplicates
ca = c['name'].str[1]
c.index = [ca, c.groupby(ca).cumcount()]
#added condition for remove all rows with no second value in name
h = df1[((df1['name'].str[0]=='L')|(df1['name'].str[0]=='M')) &
(df1['ntv'] != 0.0) & (df1['name'].str[1].notnull())].copy()
#created MultiIndex for align with Counter duplicates
ha = h['name'].str[1]
h.index = [ha, h.groupby(ha).cumcount()]
print (c)
copy name type ntv
name
A 0 G1 BA X 0.450
B 0 G1 BB X 0.878
A 1 F2 BA1 X -7.890
B 1 F2 BB X 2.345
print (h)
copy name type ntv
name
A 0 G1 LA1 Y 1.234
B 0 G1 LB Y 1.056
A 1 F2 MA Y -0.871
B 1 F2 LB1 Y 0.737