我想面对一个情节,但每个面板都有一个参考图。让我尝试用图片展示我想要实现的目标:我的示例data_frame:
require(dplyr)
df <- data_frame( id = c(rep('ctr',40), rep('pat',80)),
class = c(rep('ctr',40), rep(c('a','b'), each = 40)),
rank = rep (1:20,6),
mean = c(rep(seq(3,-3, length.out = 20),2),
rep(seq(1,-4, length.out = 20),2),
rep(seq(-2,-8, length.out = 20),2)),
sd = rep(seq(1.2,0.8, length.out = 20), times = 6),
exam = rep(c('blue','red'), each = 20, times = 3))
我的情节:
# first, create reference plot of the 'controls'
require(ggplot2)
p_ctr <- ggplot() +
geom_line(data = filter(df, id == 'ctr'),
aes(x=rank, y=mean, color=exam), linetype=1) +
geom_ribbon(data = filter(df, id == 'ctr'),
aes(x = rank, ymax = mean+sd, ymin = mean-sd,
fill = exam), alpha = .1) +
scale_colour_manual(values = c("#00b6eb","#eb0041")) +
scale_fill_manual(values = c("#00b6eb","#eb0041"))
# then, overlay with plot of 'patients'
p_ctr + geom_line(data = filter(df, id == 'pat'),
aes(x=rank, y=mean, linetype = class)) +
geom_ribbon(data = filter(df, id == 'pat'),
aes(x = rank, ymax = mean+sd, ymin = mean-sd,
group = class),
alpha = .1) +
facet_wrap(~exam)
就在那里: 然而,理想情况下,我想绘制不同的&#34;类&#34;在单独的面板中,但控制图作为每个面板中的参考:
我尝试了不同的刻面组合,没有很好的结果。我想,必须有一个简单的解决方案吗?
答案 0 :(得分:2)
也许是这样。
library(dplyr)
library(ggplot2)
df1 <- filter(df, id == 'ctr')
df2 <- filter(df, id == 'pat')
df2 <- dplyr::rename(df2, class_2 = class)
p_ctr <- ggplot() +
geom_line(data = df1, aes(x=rank, y=mean, color=exam)) +
geom_ribbon(data = df1,
aes(x = rank, ymax = mean+sd, ymin = mean-sd, fill = exam),
alpha = .1) +
scale_colour_manual(values = c("#00b6eb","#eb0041")) +
scale_fill_manual(values = c("#00b6eb","#eb0041")) +
geom_line(data = df2,
aes(x=rank, y=mean)) +
geom_ribbon(data = df2,
aes(x = rank, ymax = mean+sd, ymin = mean-sd),
alpha = .1) +
facet_grid(class_2 ~ exam)
p_ctr
使用facet_wrap
会出现以下错误:
gList中的错误(列表(x = 0.5,y = 0.5,宽度= 1,高度= 1,只是=&#34;中心&#34;,: 只有&#39; grobs&#39;允许进入&#34; gList&#34;
您在寻找解决方案时可能会遇到此情节。
p_ctr + geom_line(data = filter(df, id == 'pat'),
aes(x=rank, y=mean)) +
geom_ribbon(data = filter(df, id == 'pat'),
aes(x = rank, ymax = mean+sd, ymin = mean-sd),
alpha = .1) +
# facet_wrap(~exam) +
facet_grid(class ~ exam)
这基本上是您的参考图及其叠加层,没有linetype
和group
参数。另外,我class ~ exam
分面。从这个图中你可以看到问题&#39;是class
包含三个独特元素:a
,b
和ctr
。这就是为什么我将class
中的变量df2
重命名为class_2
,其中只有两个唯一元素:a
和b
。然后按class_2 ~ exam
分区可以得到所需的输出。
我希望这会有所帮助。