虽然nan == nan
始终是False
,但在很多情况下,人们希望将它们视为平等,这一点已在pandas.DataFrame.equals
中得到体现:
相同位置的NaN被认为是相等的。
当然,我可以写
def equalp(x, y):
return (x == y) or (math.isnan(x) and math.isnan(y))
但是,对于非数字上的[float("nan")]
和isnan
barfs等容器,这会失败(所以the complexity increases)。
那么,人们如何比较可能包含nan
的复杂Python对象?
PS 即可。动机:当比较大熊猫DataFrame
中的两行时,我会convert them into dict
s并逐个元素地比较dicts。
答案 0 :(得分:4)
假设您有一个nan
值的数据框:
In [10]: df = pd.DataFrame(np.random.randint(0, 20, (10, 10)).astype(float), columns=["c%d"%d for d in range(10)])
In [10]: df.where(np.random.randint(0,2, df.shape).astype(bool), np.nan, inplace=True)
In [10]: df
Out[10]:
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
0 NaN 6.0 14.0 NaN 5.0 NaN 2.0 12.0 3.0 7.0
1 NaN 6.0 5.0 17.0 NaN NaN 13.0 NaN NaN NaN
2 NaN 17.0 NaN 8.0 6.0 NaN NaN 13.0 NaN NaN
3 3.0 NaN NaN 15.0 NaN 8.0 3.0 NaN 3.0 NaN
4 7.0 8.0 7.0 NaN 9.0 19.0 NaN 0.0 NaN 11.0
5 NaN NaN 14.0 2.0 NaN NaN 0.0 NaN NaN 8.0
6 3.0 13.0 NaN NaN NaN NaN NaN 12.0 3.0 NaN
7 13.0 14.0 NaN 5.0 13.0 NaN 18.0 6.0 NaN 5.0
8 3.0 9.0 14.0 19.0 11.0 NaN NaN NaN NaN 5.0
9 3.0 17.0 NaN NaN 0.0 NaN 11.0 NaN NaN 0.0
你想要比较行,比如第0行和第8行。然后只需使用fillna
并进行矢量化比较:
In [12]: df.iloc[0,:].fillna(0) != df.iloc[8,:].fillna(0)
Out[12]:
c0 True
c1 True
c2 False
c3 True
c4 True
c5 False
c6 True
c7 True
c8 True
c9 True
dtype: bool
如果您只想知道哪些列不同,您可以使用生成的布尔数组索引列:
In [14]: df.columns[df.iloc[0,:].fillna(0) != df.iloc[8,:].fillna(0)]
Out[14]: Index(['c0', 'c1', 'c3', 'c4', 'c6', 'c7', 'c8', 'c9'], dtype='object')
答案 1 :(得分:0)
我假设您有阵列数据或者至少可以转换为numpy数组?
一种方法是使用numpy.ma
数组屏蔽所有nans,然后比较数组。所以你的出发情况将是......像这样
import numpy as np
import numpy.ma as ma
arr1 = ma.array([3,4,6,np.nan,2])
arr2 = ma.array([3,4,6,np.nan,2])
print arr1 == arr2
print ma.all(arr1==arr2)
>>> [ True True True False True]
>>> False # <-- you want this to show True
解决方案:
arr1[np.isnan(arr1)] = ma.masked
arr2[np.isnan(arr2)] = ma.masked
print arr1 == arr2
print ma.all(arr1==arr2)
>>> [True True True -- True]
>>> True
答案 2 :(得分:0)
这是一个递归到数据结构中的函数,用唯一的字符串替换 nan
值。我写这个是为了一个单元测试,比较可能包含 nan
的数据结构。
它仅针对由 dict
和 list
组成的数据结构而设计,但很容易看出如何对其进行扩展。
from math import isnan
from uuid import uuid4
from typing import Union
NAN_REPLACEMENT = f"THIS_WAS_A_NAN{uuid4()}"
def replace_nans(data_structure: Union[dict, list]) -> Union[dict, list]:
if isinstance(data_structure, dict):
iterme = data_structure.items()
elif isinstance(data_structure, list):
iterme = enumerate(data_structure)
else:
raise ValueError(
"replace_nans should only be called on structures made of dicts and lists"
)
for key, value in iterme:
if isinstance(value, float) and isnan(value):
data_structure[key] = NAN_REPLACEMENT
elif isinstance(value, dict) or isinstance(value, list):
data_structure[key] = replace_nans(data_structure[key])
return data_structure