我正在研究一个字符级的回归神经网络。为了训练网,我从互联网上复制了一个文本语料库。以下是包含错误的代码块:
X = np.zeros((int(len(data)/SEQ_LENGTH), SEQ_LENGTH, VOCAB_SIZE))
y = np.zeros((int(len(data)/SEQ_LENGTH), SEQ_LENGTH, VOCAB_SIZE))
for i in range(0, int(len(data)/SEQ_LENGTH)):
X_sequence = data[i*SEQ_LENGTH:(i+1)*SEQ_LENGTH]
X_sequence_ix = [char_to_ix[value] for value in X_sequence]
input_sequence = np.zeros((SEQ_LENGTH, VOCAB_SIZE))
for j in range(SEQ_LENGTH):
input_sequence[j][X_sequence_ix[j]] = 1.
X[i] = input_sequence
y_sequence = data[i*SEQ_LENGTH+1:(i+1)*SEQ_LENGTH+1]
y_sequence_ix = [char_to_ix[value] for value in y_sequence]
target_sequence = np.zeros((SEQ_LENGTH, VOCAB_SIZE))
for j in range(SEQ_LENGTH):
target_sequence[j][y_sequence_ix[j]] = 1
y[i] = target_sequence
基本上我所做的就是将字符转换为ASCII等效字符。 y_sequence
是字符序列,y_sequence_ix
是其对应的ASCII序列。 VOCAB_SIZE
变量包含文本语料库中唯一字符的数量。此行中出现错误:
target_sequence[j][y_sequence_ix[j]] = 1
完整的源代码以及文本语料库:https://github.com/tanmay-edgelord/charRNN
请询问您回答问题所需的任何信息。
修改
调用函数traceback.print_stack()
时的TRACEBACKFile "/usr/lib/python3.5/runpy.py", line 184, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.5/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.5/dist-packages/traitlets/config/application.py", line 658, in launch_instance
app.start()
File "/usr/local/lib/python3.5/dist-packages/ipykernel/kernelapp.py", line 478, in start
self.io_loop.start()
File "/usr/local/lib/python3.5/dist-packages/zmq/eventloop/ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "/usr/local/lib/python3.5/dist-packages/tornado/ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "/usr/local/lib/python3.5/dist-packages/tornado/stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.5/dist-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.5/dist-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/tornado/stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.5/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.5/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.5/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.5/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/IPython/core/interactiveshell.py", line 2728, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.5/dist-packages/IPython/core/interactiveshell.py", line 2856, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.5/dist-packages/IPython/core/interactiveshell.py", line 2910, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-15-b47f6c9a5577>", line 2, in <module>
traceback.print_stack()
答案 0 :(得分:0)
问题出在y_sequence_ix[j]
,因为您的j
范围函数使用的是SEQ_LENGTH + 1。这是您想要的,因为您预测列表中的next
值,但它也会产生一个问题,y_sequence_ix
在i
data
的最后一次迭代时,1个样本太短{1}}与SEQ_LENGTH
均分。
import string
import random
import numpy as np
ix_to_char = list(string.ascii_lowercase)
data = [random.choice(string.ascii_lowercase) for x in range(1000)]
char_to_ix = {v:i for i,v in enumerate(ix_to_char)}
VOCAB_SIZE = len(char_to_ix)
SEQ_LENGTH = 5
usable_len = len(data)-1 #Note: don't try to use the last entry in data
X = np.zeros((int(usable_len/SEQ_LENGTH), SEQ_LENGTH, VOCAB_SIZE))
y = np.zeros((int(usable_len/SEQ_LENGTH), SEQ_LENGTH, VOCAB_SIZE))
for i in range(0, int(usable_len/SEQ_LENGTH)):
X_sequence = data[i*SEQ_LENGTH:(i+1)*SEQ_LENGTH]
X_sequence_ix = [char_to_ix[value] for value in X_sequence]
input_sequence = np.zeros((SEQ_LENGTH, VOCAB_SIZE))
for j in range(SEQ_LENGTH):
input_sequence[j][X_sequence_ix[j]] = 1.
X[i] = input_sequence
y_sequence = data[i*SEQ_LENGTH+1:(i+1)*SEQ_LENGTH+1]
y_sequence_ix = [char_to_ix[value] for value in y_sequence]
target_sequence = np.zeros((SEQ_LENGTH, VOCAB_SIZE))
for j in range(SEQ_LENGTH):
target_sequence[j][y_sequence_ix[j]] = 1
y[i] = target_sequence
除了顶部的数据创建之外,此处修改的唯一内容是在数据创建中使用len(data)-1
而不是len(data)
。通过截断单个值,您可以确保不会出现index out of range
类型错误。这是最简单的事情,但是你也可以将SEQ_LENGTH设置为一个不是len(数据)的偶数倍的值,即.. 6
适用于上面的例子。