以下代码抛出错误说"意外关键字arguemnt' max_bin'"。后来我找到了'max_bin' is depreciated。那么如何使用' params'来传递max_bin?任何人都可以给我看一段示例代码吗?
lgb.Dataset(x_train, lable=y, max_bin=56)
/anaconda3/lib/python3.6/site-packages/lightgbm/basic.py:648:LGBMDeprecationWarning:不推荐使用max_bin参数 在2.0.12版本中删除。请使用params传递此信息 参数。 '请使用params传递此参数。',LGBMDeprecationWarning)
答案 0 :(得分:1)
错误消息中提到的params
是指传递给train()
函数的Parameters。如果您使用python API的sklearn类,则某些参数也可用作分类器__init__()
方法中的关键字参数。
示例:强>
import lightgbm as lgb
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data,
iris.target,
test_size=0.2)
lgb_train = lgb.Dataset(X_train, y_train)
# here are the parameters you need
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'multiclass',
'num_class': 3,
'max_bin': 4 # <-- max_bin
}
gbm = lgb.train(params,
lgb_train,
num_boost_round=20)
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration)
y_pred = np.argmax(y_pred, axis=1)
print("Accuracy: ", accuracy_score(y_test, y_pred))
有关详细示例,我建议您查看LGBM附带的python examples。
答案 1 :(得分:0)
在 max_bin
字典中设置 params
,然后将其传递给 lgb.Dataset
构造函数。请注意,max_bin
在 official doc 中被指定为数据集参数。
import lightgbm as lgb
lgb.Dataset(x_train, label=y_train, params={"max_bin": 63})