我必须在保险应用程序中制作一个模块,用于处理系统中融入的保险公司之间的清算和结算(我认为这是正确的财务术语)。实际上,系统必须将公司必须支付的所有金额配对,并且只有通过银行支付的未配对(剩余)金额。目前,该系统中约有30家公司 我所做的关于清算和解决的所有读数都指向了图形和图形理论(我在很久以前就在高中学习过)。 对于有4家公司的系统,图表看起来像这样:
其中每个公司代表一个节点(N1 ... N4),每个加权边代表公司必须支付给另一个的金额。在我的代码中,节点是int,代表公司的id。
到目前为止我做了什么...我创建了图形(对于测试我使用了随机生成器的数量)并制作了一个递归函数来计算图中所有可能的周期。然后我做了另一个递归函数,它采用所有非零周期,从最长路径开始,最大公共和为对。 该算法在最终结果方面似乎是有效的,但对于大于7-8个节点的图形,它需要很长时间才能完成。问题在于递归函数,它在图中创建了可能的循环。这是我的代码:
static void Main(string[] args)
{
int nodes = 4;
try
{
nodes = Convert.ToInt32(args[0]);
}
catch { }
DateTime start = DateTime.Now;
Graph g = new Graph(nodes);
int step = 0;
double CompensatedAmount = 0;
double TotalCompensatedAmount = 0;
DateTime endGeneration = DateTime.Now;
Console.WriteLine("Graph generated in: " + (endGeneration - start).TotalSeconds + " seconds.");
Compensare.RunCompensation(false, g, step, CompensatedAmount, TotalCompensatedAmount, out CompensatedAmount, out TotalCompensatedAmount);
DateTime endCompensation = DateTime.Now;
Console.WriteLine("Graph compensated in: " + (endCompensation - endGeneration).TotalSeconds + " seconds.");
}
......和主要班级:
public static class Compensare
{
public static void RunCompensation(bool exit, Graph g, int step, double prevCompensatedAmount, double prevTotalCompensatedAmount, out double CompensatedAmount, out double TotalCompensatedAmount)
{
step++;
CompensatedAmount = prevCompensatedAmount;
TotalCompensatedAmount = prevTotalCompensatedAmount;
if (!exit)
{
List<Cycle> orderedList = g.Cycles.OrderByDescending(x => x.CycleCompensatedAmount).ToList();
g.ListCycles(orderedList, "OrderedCycles" + step.ToString() + ".txt");
using (Graph clona = g.Clone())
{
int maxCycleIndex = clona.GetMaxCycleByCompensatedAmount();
double tmpCompensatedAmount = clona.Cycles[maxCycleIndex].CycleMin;
exit = tmpCompensatedAmount <= 0 ? true : false;
CompensatedAmount += tmpCompensatedAmount;
TotalCompensatedAmount += (tmpCompensatedAmount * clona.Cycles[maxCycleIndex].EdgesCount);
clona.CompensateCycle(maxCycleIndex);
clona.UpdateCycles();
Console.WriteLine(String.Format("{0} - edges: {4} - min: {3} - {1} - {2}\r\n", step, CompensatedAmount, TotalCompensatedAmount, tmpCompensatedAmount, clona.Cycles[maxCycleIndex].EdgesCount));
RunCompensation(exit, clona, step, CompensatedAmount, TotalCompensatedAmount, out CompensatedAmount, out TotalCompensatedAmount);
}
}
}
}
public class Edge
{
public int Start { get; set; }
public int End { get; set; }
public double Weight { get; set; }
public double InitialWeight {get;set;}
public Edge() { }
public Edge(int _start, int _end, double _weight)
{
this.Start = _start;
this.End = _end;
this.Weight = _weight;
this.InitialWeight = _weight;
}
}
public class Cycle
{
public List<Edge> Edges = new List<Edge>();
public double CycleWeight = 0;
public double CycleMin = 0;
public double CycleMax = 0;
public double CycleAverage = 0;
public double CycleCompensatedAmount = 0;
public int EdgesCount = 0;
public Cycle() { }
public Cycle(List<Edge> _edges)
{
this.Edges = new List<Edge>(_edges);
UpdateCycle();
}
public void UpdateCycle()
{
UpdateCycle(this);
}
public void UpdateCycle(Cycle c)
{
double sum = 0;
double min = c.Edges[0].Weight;
double max = c.Edges[0].Weight;
for(int i=0;i<c.Edges.Count;i++)
{
sum += c.Edges[i].Weight;
min = c.Edges[i].Weight < min ? c.Edges[i].Weight : min;
max = c.Edges[i].Weight > max ? c.Edges[i].Weight : max;
}
c.EdgesCount = c.Edges.Count;
c.CycleWeight = sum;
c.CycleMin = min;
c.CycleMax = max;
c.CycleAverage = sum / c.EdgesCount;
c.CycleCompensatedAmount = min * c.EdgesCount;
}
}
public class Graph : IDisposable
{
public List<int> Nodes = new List<int>();
public List<Edge> Edges = new List<Edge>();
public List<Cycle> Cycles = new List<Cycle>();
public int NodesCount { get; set; }
public Graph() { }
public Graph(int _nodes)
{
this.NodesCount = _nodes;
GenerateNodes();
GenerateEdges();
GenerateCycles();
}
private int FindNode(string _node)
{
for(int i = 0; i < this.Nodes.Count; i++)
{
if (this.Nodes[i].ToString() == _node)
return i;
}
return 0;
}
private int FindEdge(string[] _edge)
{
for(int i = 0; i < this.Edges.Count; i++)
{
if (this.Edges[i].Start.ToString() == _edge[0] && this.Edges[i].End.ToString() == _edge[1] && Convert.ToDouble(this.Edges[i].Weight) == Convert.ToDouble(_edge[2]))
return i;
}
return 0;
}
public Graph Clone()
{
Graph clona = new Graph();
clona.Nodes = new List<int>(this.Nodes);
clona.Edges = new List<Edge>(this.Edges);
clona.Cycles = new List<Cycle>(this.Cycles);
clona.NodesCount = this.NodesCount;
return clona;
}
public void CompensateCycle(int cycleIndex)
{
for(int i = 0; i < this.Cycles[cycleIndex].Edges.Count; i++)
{
this.Cycles[cycleIndex].Edges[i].Weight -= this.Cycles[cycleIndex].CycleMin;
}
}
public int GetMaxCycleByCompensatedAmount()
{
int toReturn = 0;
for (int i = 0; i < this.Cycles.Count; i++)
{
if (this.Cycles[i].CycleCompensatedAmount > this.Cycles[toReturn].CycleCompensatedAmount)
{
toReturn = i;
}
}
return toReturn;
}
public void GenerateNodes()
{
for (int i = 0; i < this.NodesCount; i++)
{
this.Nodes.Add(i + 1);
}
}
public void GenerateEdges()
{
Random r = new Random();
for(int i = 0; i < this.Nodes.Count; i++)
{
for(int j = 0; j < this.Nodes.Count; j++)
{
if(this.Nodes[i] != this.Nodes[j])
{
int _weight = r.Next(0, 500);
Edge e = new Edge(this.Nodes[i], this.Nodes[j], _weight);
this.Edges.Add(e);
}
}
}
}
public void GenerateCycles()
{
for(int i = 0; i < this.Edges.Count; i++)
{
FindCycles(new Cycle(new List<Edge>() { this.Edges[i] }));
}
this.UpdateCycles();
}
public void UpdateCycles()
{
for (int i = 0; i < this.Cycles.Count; i++)
{
this.Cycles[i].UpdateCycle();
}
}
private void FindCycles(Cycle path)
{
List<Edge> nextPossibleEdges = GetNextEdges(path.Edges[path.Edges.Count - 1].End);
for (int i = 0; i < nextPossibleEdges.Count; i++)
{
if (path.Edges.IndexOf(nextPossibleEdges[i]) < 0) // the edge shouldn't be already in the path
{
Cycle temporaryPath = new Cycle(path.Edges);
temporaryPath.Edges.Add(nextPossibleEdges[i]);
if (nextPossibleEdges[i].End == temporaryPath.Edges[0].Start) // end of path - valid cycle
{
if (!CycleExists(temporaryPath))
{
this.Cycles.Add(temporaryPath);
break;
}
}
else
{
FindCycles(temporaryPath);
}
}
}
}
private bool CycleExists(Cycle cycle)
{
bool toReturn = false;
if (this.Cycles.IndexOf(cycle) > -1) { toReturn = true; }
else
{
for (int i = 0; i < this.Cycles.Count; i++)
{
if (this.Cycles[i].Edges.Count == cycle.Edges.Count && !CompareEdges(this.Cycles[i].Edges[0], cycle.Edges[0]))
{
bool cycleExists = true;
for (int j = 0; j < cycle.Edges.Count; j++)
{
bool edgeExists = false; // if there is an edge not in the path, then the searched cycle is diferent from the current cycle and we can pas to the next iteration
for (int k = 0; k < this.Cycles[i].Edges.Count; k++)
{
if (CompareEdges(cycle.Edges[j], this.Cycles[i].Edges[k]))
{
edgeExists = true;
break;
}
}
if (!edgeExists)
{
cycleExists = false;
break;
}
}
if (cycleExists) // if we found an cycle with all edges equal to the searched cycle, then the cycle is not valid
{
toReturn = true;
break;
}
}
}
}
return toReturn;
}
private bool CompareEdges(Edge e1, Edge e2)
{
return (e1.Start == e2.Start && e1.End == e2.End && e1.Weight == e2.Weight);
}
private List<Edge> GetNextEdges(int endNode)
{
List<Edge> tmp = new List<Edge>();
for(int i = 0; i < this.Edges.Count; i++)
{
if(endNode == this.Edges[i].Start)
{
tmp.Add(this.Edges[i]);
}
}
return tmp;
}
#region IDisposable Support
private bool disposedValue = false; // To detect redundant calls
protected virtual void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)
{
// TODO: dispose managed state (managed objects).
this.Nodes = null;
this.Edges = null;
this.Cycles = null;
this.NodesCount = 0;
}
// TODO: free unmanaged resources (unmanaged objects) and override a finalizer below.
// TODO: set large fields to null.
disposedValue = true;
}
}
// TODO: override a finalizer only if Dispose(bool disposing) above has code to free unmanaged resources.
// ~Graph() {
// // Do not change this code. Put cleanup code in Dispose(bool disposing) above.
// Dispose(false);
// }
// This code added to correctly implement the disposable pattern.
public void Dispose()
{
// Do not change this code. Put cleanup code in Dispose(bool disposing) above.
Dispose(true);
// TODO: uncomment the following line if the finalizer is overridden above.
// GC.SuppressFinalize(this);
}
#endregion
}
我发现了几篇关于图形的文章/答案,包括Java和C#(包括quickgraph),但它们主要关注有向图(没有循环)。 我还读过有关尾部调用优化的信息,用于递归,但我不知道是否/如何在我的情况下实现。
我现在有很多东西需要掌握这个问题,但也许有人不得不处理类似的事情,可以帮助我优化代码(正如我所说的那样最终完成工作),要么指出我向另一个方向重新思考整个过程。
答案 0 :(得分:0)
我认为你可以大规模简化这一点。
所有资金都相同,所以(使用您的示例)N1
并不关心它是否从N2
获得350 并支付150 N2
等等 - N1
只关心整体最终145
结束(如果我已正确完成算术运算) 。同样,彼此N
只关心其整体位置。因此,总结每个节点的流入和流出,我们得到:
Company Net position
N1 -145
N2 -65
N3 +195
N4 +15
因此,如果有人作为中央清算所 - 银行 - 只需安排N1和N2分别向清算所145和65支付,而N3和N4则接收 195和15分别来自清算所。每个人都很高兴。
我可能错过了某些方面,当然,在这种情况下,我确定有人会指出它......