感谢Mats Petersson的帮助。他的C ++运行时间最终看起来不错!但我有两个新问题。
Mats Petersson的C ++代码是:
#include <iostream>
#include <openblas/cblas.h>
#include <array>
#include <iterator>
#include <random>
#include <ctime>
using namespace std;
const blasint m = 100, k = 100, n = 100;
// Mats Petersson's declaration
array<array<double, k>, m> AA[500];
array<array<double, n>, k> BB[500];
array<array<double, n>, m> CC[500];
// My declaration
array<array<double, k>, m> AA1;
array<array<double, n>, k> BB1;
array<array<double, n>, m> CC1;
int main(void) {
CBLAS_ORDER Order = CblasRowMajor;
CBLAS_TRANSPOSE TransA = CblasNoTrans, TransB = CblasNoTrans;
const float alpha = 1;
const float beta = 0;
const int lda = k;
const int ldb = n;
const int ldc = n;
default_random_engine r_engine(time(0));
uniform_real_distribution<double> uniform(0, 1);
double dur = 0;
clock_t start,end;
double total = 0;
// Mats Petersson's initialization and computation
for(int i = 0; i < 500; i++) {
for (array<array<double, k>, m>::iterator iter = AA[i].begin(); iter != AA[i].end(); ++iter) {
for (double &number : (*iter))
number = uniform(r_engine);
}
for (array<array<double, n>, k>::iterator iter = BB[i].begin(); iter != BB[i].end(); ++iter) {
for (double &number : (*iter))
number = uniform(r_engine);
}
}
start = clock();
for(int i = 0; i < 500; ++i){
cblas_dgemm(Order, TransA, TransB, m, n, k, alpha, &AA[i][0][0], lda, &BB[i][0][0], ldb, beta, &CC[i][0][0], ldc);
}
end = clock();
dur += (double)(end - start);
cout<<endl<<"Mats Petersson spends "<<(dur/CLOCKS_PER_SEC)<<" seconds to compute it"<<endl<<endl;
// It turns me!
dur = 0;
for(int i = 0; i < 500; i++){
for(array<array<double, k>, m>::iterator iter = AA1.begin(); iter != AA1.end(); ++iter){
for(double& number : (*iter))
number = uniform(r_engine);
}
for(array<array<double, n>, k>::iterator iter = BB1.begin(); iter != BB1.end(); ++iter){
for(double& number : (*iter))
number = uniform(r_engine);
}
start = clock();
cblas_dgemm(Order, TransA, TransB, m, n, k, alpha, &AA1[0][0], lda, &BB1[0][0], ldb, beta, &CC1[0][0], ldc);
end = clock();
dur += (double)(end - start);
}
cout<<endl<<"I spend "<<(dur/CLOCKS_PER_SEC)<<" seconds to compute it"<<endl<<endl;
}
结果如下:
Mats Petersson spends 0.215056 seconds to compute it
I spend 0.459066 seconds to compute it
那么,为什么他的代码比我的代码快两倍呢?
numpy代码是
import numpy as np
import time
a = {}
b = {}
c = {}
for i in range(500):
a[i] = np.matrix(np.random.rand(100, 100))
b[i] = np.matrix(np.random.rand(100, 100))
c[i] = np.matrix(np.random.rand(100, 100))
start = time.time()
for i in range(500):
c[i] = a[i]*b[i]
print(time.time() - start)
仍然无法理解!
答案 0 :(得分:2)
因此,我无法使用此代码重现原始结果:
#include <iostream>
#include <openblas/cblas.h>
#include <array>
#include <iterator>
#include <random>
#include <ctime>
using namespace std;
const blasint m = 100, k = 100, n = 100;
array<array<double, k>, m> AA[500];
array<array<double, n>, k> BB[500];
array<array<double, n>, m> CC[500];
int main(void) {
CBLAS_ORDER Order = CblasRowMajor;
CBLAS_TRANSPOSE TransA = CblasNoTrans, TransB = CblasNoTrans;
const float alpha = 1;
const float beta = 0;
const int lda = k;
const int ldb = n;
const int ldc = n;
default_random_engine r_engine(time(0));
uniform_real_distribution<double> uniform(0, 1);
double dur = 0;
clock_t start,end;
double total = 0;
for(int i = 0; i < 500; i++){
for(array<array<double, k>, m>::iterator iter = AA[i].begin(); iter != AA[i].end(); ++iter){
for(double& number : (*iter))
number = uniform(r_engine);
}
for(array<array<double, n>, k>::iterator iter = BB[i].begin(); iter != BB[i].end(); ++iter){
for(double& number : (*iter))
number = uniform(r_engine);
}
}
start = clock();
for(int i = 0; i < 500; i++)
{
cblas_dgemm(Order, TransA, TransB, m, n, k, alpha, &AA[i][0][0], lda, &BB[i][0][0], ldb, beta,
&CC[i][0][0], ldc);
total += CC[i][i/5][i/5];
}
end = clock();
dur = (double)(end - start);
cout<<endl<<"It spends "<<(dur/CLOCKS_PER_SEC)<<" seconds to compute it"<<endl<<endl;
cout << "total =" << total << endl;
}
和这段代码:
import numpy as np
import time
a = {}
b = {}
c = {}
for i in range(500):
a[i] = np.matrix(np.random.rand(100, 100))
b[i] = np.matrix(np.random.rand(100, 100))
c[i] = np.matrix(np.random.rand(100, 100))
start = time.time()
for i in range(500):
c[i] = a[i]*b[i]
print(time.time() - start)
我们知道循环(几乎)做同样的事情。我的结果如下:
使数组全局确保我们不会炸毁堆栈。我还将rengine1更改为rengine,因为它不会按原样编译。
然后我确保两个示例都计算出500个不同的数组值。
有趣的是,g ++的总时间比clang ++的总时间短得多 - 但这是时间测量之外的循环,实际的矩阵乘法是相同的,给出或取千分之一秒。 python的总执行时间介于clang和g ++之间。