从此数据框
+-----+-----------------+
|store| values |
+-----+-----------------+
| 1|[1, 2, 3,4, 5, 6]|
| 2| [2,3]|
+-----+-----------------+
我想应用Counter
函数来实现此目的:
+-----+------------------------------+
|store| values |
+-----+------------------------------+
| 1|{1:1, 2:1, 3:1, 4:1, 5:1, 6:1}|
| 2|{2:1, 3:1} |
+-----+------------------------------+
我使用另一个问题的答案得到了这个数据框:
GroupBy and concat array columns pyspark
所以我尝试修改这样的答案中的代码:
选项1:
def flatten_counter(val):
return Counter(reduce (lambda x, y:x+y, val))
udf_flatten_counter = sf.udf(flatten_counter, ty.ArrayType(ty.IntegerType()))
df3 = df2.select("store", flatten_counter("values2").alias("values3"))
df3.show(truncate=False)
选项2:
df.rdd.map(lambda r: (r.store, r.values)).reduceByKey(lambda x, y: x + y).map(lambda row: Counter(row[1])).toDF(['store', 'values']).show()
但它不起作用。
有人知道我该怎么办?
谢谢
答案 0 :(得分:4)
您只需提供正确的数据类型
udf_flatten_counter = sf.udf(
lambda x: dict(Counter(x)),
ty.MapType(ty.IntegerType(), ty.IntegerType()))
df = spark.createDataFrame(
[(1, [1, 2, 3, 4, 5, 6]), (2, [2, 3])], ("store", "values"))
df.withColumn("cnt", udf_flatten_counter("values")).show(2, False)
# +-----+------------------+---------------------------------------------------+
# |store|values |cnt |
# +-----+------------------+---------------------------------------------------+
# |1 |[1, 2, 3, 4, 5, 6]|Map(5 -> 1, 1 -> 1, 6 -> 1, 2 -> 1, 3 -> 1, 4 -> 1)|
# |2 |[2, 3] |Map(2 -> 1, 3 -> 1) |
# +-----+------------------+---------------------------------------------------+
与RDD相似
df.rdd.mapValues(Counter).mapValues(dict).toDF(["store", "values"]).show(2, False)
# +-----+---------------------------------------------------+
# |store|values |
# +-----+---------------------------------------------------+
# |1 |Map(5 -> 1, 1 -> 1, 6 -> 1, 2 -> 1, 3 -> 1, 4 -> 1)|
# |2 |Map(2 -> 1, 3 -> 1) |
# +-----+---------------------------------------------------+
转换为dict
是必要的,因为显然Pyrolite无法处理Counter
个对象。