我在编程方面仍然是一个初学者,而且我的代码遇到了一些问题。在这里搜索解决方案,但遗憾的是没有任何帮助。
我想做的事情: 我有一个csv文件(我从多个txt.files导入)。我的一个列列出了从2015年到1991年的年份,我想根据相应的年份将我文件的所有行分类到不同的csvs。 我当前的代码看起来像这样(尽管我改变了很多,尝试使用我在这方面找到的提示)
einzel = pd.read_csv("501-1000.csv", sep='\t',header=0,index_col=False,usecols = ("TI","AB","PY","DI"),dtype = str)
with open("501-1000.csv", "r",encoding="utf_8"):
for row in einzel:
if einzel["PY"] == ["2015","2014","2013","2012","2011"]:
with open("a.csv","a") as out:
writer.writerow(row)
elif einzel["PY"] == ["2010","2009","2008","2007","2006"]:
with open("b.csv","a") as out:
writer.writerow(row)
elif einzel["PY"] == ["2005","2004","2003","2002","2001"]:
with open("c.csv","a") as out:
writer.writerow(row)
elif einzel["PY"] == ["2000","1999","1998","1997","1996"]:
with open("d.csv","a") as out:
writer.writerow(row)
elif einzel["PY"] == ["1995","1994","1993","1992","1991"]:
with open("e.csv","a") as out:
writer.writerow(row)
现在......这不起作用,我收到错误
ValueError:数组的长度不同:489 vs 5
Traceback是
ValueError Traceback (most recent call last)
<ipython-input-10-72280961cb7d> in <module>()
19 # writer = csv.writer(out)
20 for row in einzel:
---> 21 if einzel["PY"] == ["2015","2014","2013","2012","2011"]:
22 with open("a.csv","a") as out:
23 writer.writerow(row)
~\Anaconda3\lib\site-packages\pandas\core\ops.py in wrapper(self, other, axis)
859
860 with np.errstate(all='ignore'):
--> 861 res = na_op(values, other)
862 if is_scalar(res):
863 raise TypeError('Could not compare %s type with Series' %
~\Anaconda3\lib\site-packages\pandas\core\ops.py in na_op(x, y)
763
764 if is_object_dtype(x.dtype):
--> 765 result = _comp_method_OBJECT_ARRAY(op, x, y)
766 else:
767
~\Anaconda3\lib\site-packages\pandas\core\ops.py in _comp_method_OBJECT_ARRAY(op, x, y)
741 y = y.values
742
--> 743 result = lib.vec_compare(x, y, op)
744 else:
745 result = lib.scalar_compare(x, y, op)
pandas\_libs\lib.pyx in pandas._libs.lib.vec_compare()
ValueError: Arrays were different lengths: 489 vs 5
我在这里搜索了这个错误,但遗憾的是没有一个解决方案有效,或者我不理解它们。 我开始使用这样的东西代替,但它没有工作......
with open("501-1000.csv", "r",encoding="utf_8") as inp:
#reader = csv.reader(inp)
#writer = csv.writer(out)
我对任何提示或更正感到高兴,如果我提出问题的方式有任何问题我会纠正它。首先发布所有信息
答案 0 :(得分:1)
这是一个熊猫解决方案。
import pandas as pd
filemap_dict = {'a': set(range(2011, 2016)),
'b': set(range(2006, 2011)),
'c': set(range(2001, 2006)),
'd': set(range(1996, 2001)),
'e': set(range(1991, 1996))}
# check your mappings are mutually exclusive
assert not set.intersection(*list(filemap_dict.values())), "Year ranges are not mutually exclusive!"
# load data; note dtype not set to str since there appear to be numeric columns
cols = ['TI', 'AB', 'PY', 'DI']
df = pd.read_csv('501-1000.csv', sep='\t', header=None, index_col=False, names=cols, usecols=cols)
# cycle through filename_dict, slice and export to csv
for k, v in filemap_dict.items():
df[df['PY'].isin(v)].to_csv(k+'.csv', index=False)