嗨我在安装此模型时出现尺寸错误,有人知道为什么吗?
multiCapabilities: [
{
browserName: 'firefox',
firefoxOptions: {
args: ['--headless']
},
'moz:firefoxOptions': {
args: [ '--headless' ]
}
}
]
每个变量的维度为
num_classes = 11
input_shape = (64,64,1)
batch_size = 128
epochs = 12
X_train = tf.reshape(X_train, [-1, 64, 64, 1])
X_test = tf.reshape(X_test, [-1, 64, 64, 1])
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), strides=1, activation='relu', input_shape=input_shape))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_test, y_test))
答案 0 :(得分:3)
这是因为您正在使用tf.reshape
,它会返回Tensor,而Keras模型的fit
方法不适用于张量。
请考虑使用np.reshape
,这将完全相同。