我有一个针对10个品牌的调查数据集,如下所示(我已经整理了数据):
# A tibble: 10 x 4
InterviewStart InterviewEnd survay response
<dttm> <dttm> <chr> <chr>
1 2017-12-02 00:21:23 2017-12-02 00:29:36 Brnd1_QRA 1
2 2017-12-02 03:52:07 2017-12-02 04:00:37 Brnd1_QRA 0
3 2017-12-01 08:23:34 2017-12-01 08:30:37 Brnd1_QRA 0
4 2017-12-01 10:34:36 2017-12-01 10:40:48 Brnd1_QRA 1
5 2017-12-01 23:25:35 2017-12-01 23:30:28 Brnd1_QRA 1
6 2017-12-01 20:02:49 2017-12-01 20:12:02 Brnd1_QRA 0
7 2017-12-01 21:56:18 2017-12-01 22:04:48 Brnd1_QRA 0
8 2017-12-01 23:38:49 2017-12-01 23:40:07 Brnd1_QRA 1
9 2017-12-01 00:43:03 2017-12-01 00:52:50 Brnd1_QRA 0
10 2017-12-01 00:20:09 2017-12-01 00:21:10 Brnd1_QRA 0
我想离散response
col并计算每个响应的总和和平均值。我的代码看起来像这样:
data_tidy %>%
mutate(response = if_else(response == 1, "Aware", "Not_Aware")) %>%
select(survay, response) %>%
filter(survay == "Brnd1_QRA") %>%
group_by(response) %>%
summarise( surveyee = n()) %>%
mutate ( total = sum(surveyee) , mean = surveyee / total)
得到这样的东西:
response surveyee total mean
<chr> <int> <int> <dbl>
1 Aware 2553 4527 0.56
2 Not_Aware 1974 4527 0.44
我想知道,如果没有第二次变异,有没有更明智的方法呢?
答案 0 :(得分:2)
Is there a reason that you are filtering out the other brands? It seems likely to lead to a lot of code duplication.
Instead, I would suggest summarising by group and using separate columns (instead of rows) for the counts of aware/not.
First, some reproducible data:
myData <-
data_frame(
survay = rep(LETTERS[1:3], each = 20)
, response = sample(0:1, 60, TRUE)
)
Then, the basic approach, which counts up each type of response (your code above suggests that values other than 0
may be possible for the "Not_aware" response, so I am sticking with your != 1
instead of using == 0
), grabs the total, then calculates the proportion aware. If you really want the proportion unaware, you could add another column using the same structure.
myData %>%
group_by(survay) %>%
summarise(
Aware = sum(response == 1)
, `Not Aware` = sum(response != 1)
, Total = n()
, `Prop Aware` = Aware / Total
)
returns
# A tibble: 3 x 5
survay Aware `Not Aware` Total `Prop Aware`
<chr> <int> <int> <int> <dbl>
1 A 9 11 20 0.450
2 B 11 9 20 0.550
3 C 10 10 20 0.500