我有一个如下的张量和一个numpy 2D数组
k = 1
mat = np.array([[1,2],[3,4],[5,6]])
for row in mat:
values_zero, indices_zero = tf.nn.top_k(row, len(row) - k)
row[indices_zero] = 0 #????
我想在那些索引中将该行中的元素分配为零。但是,我无法索引张量并分配给它。我尝试过使用 tf.gather 功能但是如何进行分配呢?我希望将它保持为张量,然后在最后的会话中运行它,如果可能的话。
答案 0 :(得分:2)
我猜你试图将每行的最大值掩盖为零?如果是这样,我会这样做。我们的想法是通过构造而不是赋值来创建张量。
import numpy as np
import tensorflow as tf
mat = np.array([[1, 2], [3, 4], [5, 6]])
# All tensorflow from here
tmat = tf.convert_to_tensor(mat)
# Get index of maximum
max_inds = tf.argmax(mat, axis=1)
# Create an array of column indices in each row
shape = tmat.get_shape()
inds = tf.range(0, shape[1], dtype=max_inds.dtype)[None, :]
# Create boolean mask of maximums
bmask = tf.equal(inds, max_inds[:, None])
# Convert boolean mask to ones and zeros
imask = tf.where(bmask, tf.zeros_like(tmat), tf.ones_like(tmat))
# Create new tensor that is masked with maximums set to zer0
newmat = tmat * imask
with tf.Session() as sess:
print(newmat.eval())
输出
[[1 0]
[3 0]
[5 0]]
答案 1 :(得分:0)
一种方法是通过高级索引:
In [87]: k = 1
In [88]: mat = np.array([[1,2],[3,4],[5,6]])
# `sess` is tf.InteractiveSession()
In [89]: vals, idxs = sess.run(tf.nn.top_k(mat, k=1))
In [90]: idxs
Out[90]:
array([[1],
[1],
[1]], dtype=int32)
In [91]: mat[:, np.squeeze(idxs)[0]] = 0
In [92]: mat
Out[92]:
array([[1, 0],
[3, 0],
[5, 0]])