我可以更改脚本(tf.app.run())在Jupyter笔记本中无错误地工作吗?

时间:2018-01-22 21:37:28

标签: python tensorflow jupyter-notebook gflags

我怀疑是否可以轻松地将此脚本转换为在没有此错误的Jupyter笔记本中运行。函数tf.app.run()提供了一个处理标志解析的包装器。但看起来张量流代码强制退出主要完成后运行的进程。

这是我的主要功能:

def main(_):

    input_fn = make_input_fn


    hparams = tf.contrib.training.HParams(
        learning_rate=.1,
    )    

    config = tf.ConfigProto(
        # allow_soft_placement=True,
        # log_device_placement=True
    )    

    trainingConfig = tf.contrib.learn.RunConfig(        
        save_summary_steps=500,
        save_checkpoints_steps=500,
        model_dir=("/tmp/tf-logs/bucketized-01"),
        session_config=config
    )    

    estimator = tf.estimator.Estimator(
        model_fn=make_model,
        params=hparams,
        config=trainingConfig
    )

    estimator.train(
        input_fn=input_fn,
        steps=TRAIN_EPOCHS,
    )           

当我打电话给Jupyter笔记本时:

if __name__ == '__main__':
    tf.app.run(main)

我遇到了这个错误:

INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Restoring parameters from /tmp/tf-logs/bucketized-01/model.ckpt-2001
INFO:tensorflow:Saving checkpoints for 2002 into /tmp/tf-logs/bucketized-01/model.ckpt.
INFO:tensorflow:loss = 11.734686, step = 2002
INFO:tensorflow:global_step/sec: 4.84241
INFO:tensorflow:loss = 11.320501, step = 2102 (20.653 sec)
INFO:tensorflow:global_step/sec: 5.54159
INFO:tensorflow:loss = 9.874545, step = 2202 (18.044 sec)
INFO:tensorflow:global_step/sec: 5.20988
INFO:tensorflow:loss = 11.533301, step = 2302 (19.196 sec)
INFO:tensorflow:Saving checkpoints for 2401 into /tmp/tf-logs/bucketized-01/model.ckpt.
INFO:tensorflow:Loss for final step: 10.57784.
An exception has occurred, use %tb to see the full traceback.

SystemExit

1 个答案:

答案 0 :(得分:1)

这里有完整的tf.app.run功能:

def run(main=None, argv=None):
  """Runs the program with an optional 'main' function and 'argv' list."""
  f = flags.FLAGS

  # Extract the args from the optional `argv` list.
  args = argv[1:] if argv else None

  # Parse the known flags from that list, or from the command
  # line otherwise.
  # pylint: disable=protected-access
  flags_passthrough = f._parse_flags(args=args)
  # pylint: enable=protected-access

  main = main or _sys.modules['__main__'].main

  # Call the main function, passing through any arguments
  # to the final program.
  _sys.exit(main(_sys.argv[:1] + flags_passthrough))

是的,它明确地调用sys.exit(),因此它不应该在Jupyter中使用。如果您只需要标记解析,只需调用flags.FLAGS._parse_flags(args=args)或使用此版本:

import sys
from tensorflow.python.platform import flags

def run(main=None, argv=None):
  args = argv[1:] if argv else None
  flags_passthrough = flags.FLAGS._parse_flags(args=args)
  main = main or sys.modules['__main__'].main
  main(sys.argv[:1] + flags_passthrough)