我认为将序列化的protobuf消息的PCollection写入文本文件并将其读回应该是非常容易的。但经过几次尝试后,我没有这样做。如果有人有任何评论,我将不胜感激。
// definition of proto.
syntax = "proto3";
package test;
message PhoneNumber {
string number = 1;
string country = 2;
}
我在下面的python代码实现了一个简单的Beam管道来将文本写入序列化的protobufs。
# Test python code
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
import phone_pb2
class ToProtoFn(beam.DoFn):
def process(self, element):
phone = phone_pb2.PhoneNumber()
phone.number, phone.country = element.strip().split(',')
yield phone.SerializeToString()
with beam.Pipeline(options=PipelineOptions()) as p:
lines = (p
| beam.Create(["123-456-789,us", "345-567-789,ca"])
| beam.ParDo(ToProtoFn())
| beam.io.WriteToText('/Users/greeness/data/phone-pb'))
管道可以成功运行并生成包含内容的文件:
$ cat ~/data/phone-pb-00000-of-00001
123-456-789us
345-567-789ca
然后我编写另一个管道来读取序列化的protobufs并用ParDo
解析它们。
class ToCsvFn(beam.DoFn):
def process(self, element):
phone = phone_pb2.PhoneNumber()
phone.ParseFromString(element)
yield ",".join([phone.number, phone.country])
with beam.Pipeline(options=PipelineOptions()) as p:
lines = (p
| beam.io.ReadFromText('/Users/greeness/data/phone*')
| beam.ParDo(ToCsvFn())
| beam.io.WriteToText('/Users/greeness/data/phone-csv'))
运行时出现此错误消息。
File "/Library/Python/2.7/site-packages/apache_beam/runners/common.py", line 458, in process_outputs
for result in results:
File "phone_example.py", line 37, in process
phone.ParseFromString(element)
File "/Library/Python/2.7/site-packages/google/protobuf/message.py", line 185, in ParseFromString
self.MergeFromString(serialized)
File "/Library/Python/2.7/site-packages/google/protobuf/internal/python_message.py", line 1069, in MergeFromString
raise message_mod.DecodeError('Truncated message.')
DecodeError: Truncated message. [while running 'ParDo(ToCsvFn)']
因此看起来无法解析序列化的protobuf字符串。我错过了什么吗?谢谢你的帮助!
答案 0 :(得分:4)
我通过已实施的tfrecordio.py
找到了一个临时解决方案。
以下代码正常运作。但我仍然愿意接受任何可以解决上述问题的意见。
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
import phone_pb2
def WriteTextToTFRecord():
class ToProtoFn(beam.DoFn):
def process(self, element):
phone = phone_pb2.PhoneNumber()
phone.number, phone.country = element.strip().split(',')
yield phone
with beam.Pipeline(options=PipelineOptions()) as p:
lines = p | beam.Create(["123-456-789,us", "345-567-789,ca"])
processed = (
lines
| beam.ParDo(ToProtoFn())
| beam.io.WriteToTFRecord('/Users/greeness/data/phone-pb',
coder=beam.coders.ProtoCoder(phone_pb2.PhoneNumber().__class__)))
def ReadTFRecordAndSaveAsCSV():
class ToCsvFn(beam.DoFn):
def process(self, element):
yield ','.join([element.number, element.country])
with beam.Pipeline(options=PipelineOptions()) as p:
lines = (p
| beam.io.ReadFromTFRecord('/Users/greeness/data/phone-pb-*',
coder=beam.coders.ProtoCoder(phone_pb2.PhoneNumber().__class__))
| beam.ParDo(ToCsvFn())
| beam.io.WriteToText('/Users/greeness/data/phone-csv'))
if __name__ == '__main__':
WriteTextToTFRecord()
ReadTFRecordAndSaveAsCSV()
答案 1 :(得分:0)
TFRecord
是这里的细节,这意味着您仍然可以在TextIO上使用它。
这里的技巧是编码器,它用于在管道运行期间对类型进行编码和解码。通常,除非类型是内置的/平凡的,否则应使用它们。在protobuf类中,使用ProtoCoder
只是正确的选择。
from google.protobuf.timestamp_pb2 import Timestamp
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
class ToProtoFn(beam.DoFn):
def process(self, element):
timestamp = Timestamp()
timestamp.seconds, timestamp.nanos = [int(x) for x in element.strip().split(',')]
print(timestamp)
yield timestamp
with beam.Pipeline(options=PipelineOptions()) as p:
lines = (p
| beam.Create(["1586753000,222333000", "1586754000,222333000"])
| beam.ParDo(ToProtoFn())
| beam.io.WriteToText('time-pb',
coder=beam.coders.ProtoCoder(Timestamp().__class__)))
class ToCsvFn(beam.DoFn):
def process(self, element):
print(element)
yield ",".join([str(element.seconds), str(element.nanos)])
with beam.Pipeline(options=PipelineOptions()) as p:
lines = (p
| beam.io.ReadFromText('time-pb-00000-of-00001',
coder=beam.coders.ProtoCoder(Timestamp().__class__))
| beam.ParDo(ToCsvFn())
| beam.io.WriteToText('time-csv'),
)