我发现data.table和dplyr在尝试做同样的事情时会有不同的结果。我想使用dplyr语法,但让它以data.table的方式进行计算。用例是我想在表格中添加小计。为此,我需要对每个变量进行一些聚合,但是保留相同的变量名称(在转换后的版本中)。 Data.table允许我对变量执行一些聚合并保持相同的名称。然后用同一个变量做另一个聚合。它将继续使用未转换的版本。但是,Dplyr将使用转换后的版本。
在摘要文档中,它说:
# Note that with data frames, newly created summaries immediately
# overwrite existing variables
mtcars %>%
group_by(cyl) %>%
summarise(disp = mean(disp), sd = sd(disp))
这基本上是我遇到的问题,但我想知道是否有一个很好的解决方法。我发现的一件事就是将变换后的变量命名为其他东西,然后在最后重命名它,但这对我来说并不是很好。如果有一个很好的方法来做小计,那也很好。我环顾了这个网站,没有看到这个确切的情况。任何帮助将不胜感激!
这里我做了一个简单的例子,一次使用data.table的结果,一次使用dplyr。我想采用这个简单的表并附加一个小计行,它是感兴趣的列的加权平均值(总计)。
library(data.table)
library(dplyr)
dt <- data.table(Group = LETTERS[1:5],
Count = c(1000, 1500, 1200, 2000, 5000),
Total = c(50, 300, 600, 400, 1000))
dt[, Count_Dist := Count/sum(Count)]
dt[, .(Count_Dist = sum(Count_Dist), Weighted_Total = sum(Count_Dist*Total))]
dt <- rbind(dt[, .(Group, Count_Dist, Total)],
dt[, .(Group = "All", Count_Dist = sum(Count_Dist), Total = sum(Count_Dist*Total))])
setnames(dt, "Total", "Weighted_Avg_Total")
dt
df <- data.frame(Group = LETTERS[1:5],
Count = c(1000, 1500, 1200, 2000, 5000),
Total = c(50, 300, 600, 400, 1000))
df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
summarize(Count_Dist = sum(Count_Dist),
Weighted_Total = sum(Count_Dist*Total))
df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
select(Group, Count_Dist, Total) %>%
rbind(df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
summarize(Group = "All",
Count_Dist = sum(Count_Dist),
Total = sum(Count_Dist*Total))) %>%
rename(Weighted_Avg_Total = Total)
再次感谢您的帮助!
答案 0 :(得分:3)
一种可能的解决方案是跳过mutate
步骤并使用transmute
作为第一个mutate
/ select
步骤,直接从原始变量计算所需的变量为第二个mutate
创建一个中间变量 - 步骤:
df %>%
transmute(Group, Count_Dist = Count/sum(Count), Weighted_Avg_Total = Total) %>%
bind_rows(df %>%
summarize(Group = "All",
Count_Dist = sum(Count/sum(Count)),
Weighted_Avg_Total = sum((Count/sum(Count))*Total)))
给出:
Group Count_Dist Weighted_Avg_Total 1 A 0.09345794 50.0000 2 B 0.14018692 300.0000 3 C 0.11214953 600.0000 4 D 0.18691589 400.0000 5 E 0.46728972 1000.0000 6 All 1.00000000 656.0748
另一种可能的解决方案是改变在dplyr
中计算新变量的顺序,然后使用select
将列顺序恢复到您最初想要的位置:
df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
select(Group, Count_Dist, Weighted_Avg_Total = Total) %>%
bind_rows(df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
summarize(Group = "All",
Weighted_Avg_Total = sum(Count_Dist*Total),
Count_Dist = sum(Count_Dist)) %>%
select(Group, Count_Dist, Weighted_Avg_Total))
如果您想要包含Count
- 列,您也可以(根据我在下面的评论):
df %>%
transmute(Group = Group, Count_Dist = Count/sum(Count), Weighted_Avg_Total = Total, Count) %>%
bind_rows(df %>%
summarize(Group = "All",
Count_Dist = sum(Count/sum(Count)),
Weighted_Avg_Total = sum((Count/sum(Count))*Total),
Count = sum(Count)))
答案 1 :(得分:1)
另一种方法是使用${...}
两次来计算mutate
甚至Weighted_Total
,并使用sum
中该列的summarize
。
df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
mutate(Weighted_Total = Count_Dist*Total) %>%
summarize(Count_Dist = sum(Count_Dist),
Weighted_Total = sum(Weighted_Total))
Result:
Count_Dist Weighted_Total
1 1 656.074766
和
df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
select(Group, Count_Dist, Total) %>%
rbind(df %>%
mutate(Count_Dist = Count/sum(Count)) %>%
mutate(Weighted_Total = Count_Dist*Total) %>%
summarize(Group = "All",
Count_Dist = sum(Count_Dist),
Total = sum(Weighted_Total))) %>%
rename(Weighted_Avg_Total = Total)
Result:
Group Count_Dist Weighted_Avg_Total
1 A 0.0934579439 50.000000
2 B 0.1401869159 300.000000
3 C 0.1121495327 600.000000
4 D 0.1869158879 400.000000
5 E 0.4672897196 1000.000000
6 All 1.0000000000 656.074766