如果我的分组变量是一个因素,我如何生成分组汇总统计信息?

时间:2011-01-29 03:26:32

标签: r apply plyr reshape

假设我想获得有关数据集mtcars的一些摘要统计信息(基本R版本2.12.1的一部分)。 下面,我根据他们拥有的发动机气缸数量对汽车进行分组,并采用mtcars中剩余变量的每组方式。

> str(mtcars)
'data.frame': 32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
> ddply(mtcars, .(cyl), mean)
       mpg cyl     disp        hp     drat       wt     qsec        vs        am     gear
1 26.66364   4 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909
2 19.74286   6 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3 15.10000   8 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
      carb
1 1.545455
2 3.428571
3 3.500000

但是,如果我的分组变量恰好是一个因素,事情会变得棘手。 ddply()会针对每个级别的因素发出警告, 因为一个人不能拿mean()因子。

> mtcars$cyl <- as.factor(mtcars$cyl)
> str(mtcars)
'data.frame': 32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
> ddply(mtcars, .(cyl), mean)
       mpg cyl     disp        hp     drat       wt     qsec        vs        am     gear
1 26.66364  NA 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909
2 19.74286  NA 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3 15.10000  NA 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
      carb
1 1.545455
2 3.428571
3 3.500000
Warning messages:
1: In mean.default(X[[2L]], ...) :
  argument is not numeric or logical: returning NA
2: In mean.default(X[[2L]], ...) :
  argument is not numeric or logical: returning NA
3: In mean.default(X[[2L]], ...) :
  argument is not numeric or logical: returning NA
>

所以,我想知道我是否只是以错误的方式生成摘要统计数据。

如何通常生成按因子或按组汇总统计数据(如均值,标准差等)的数据结构?我应该使用ddply()以外的其他内容吗?如果我可以使用ddply(),我该怎么做才能避免在尝试采用分组因子的平均值时产生的错误?

2 个答案:

答案 0 :(得分:8)

使用numcolwise(mean)numcolwise函数将其参数(函数)转换为仅对数字列进行操作的函数(并忽略分类/因子列)。

  > ddply(mtcars, .(cyl), numcolwise(mean))

      cyl      mpg     disp        hp     drat       wt     qsec        vs
    1   4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727 0.9090909
    2   6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286
    3   8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000
             am     gear     carb
    1 0.7272727 4.090909 1.545455
    2 0.4285714 3.857143 3.428571
    3 0.1428571 3.285714 3.500000

答案 1 :(得分:2)

这里不是答案,而是观察。这不是ddply()本身的问题。看这个。以下两者都可以很好地生成一个表格:

aggregate(mtcars, by=list(mtcars$cyl), mean)
apply(mtcars, 2, function(col) tapply(col, INDEX=mtcars$cyl, FUN=mean))

但是mtcars$cyl <- as.factor(mtcars$cyl)之后的上述工作都没有,因为R不知道如何取一列因子的均值。我们可以通过从传递给mean()的内容中删除该列(“cyl”是第2列)来避免它:

aggregate(mtcars[ , -2], by=list(mtcars$cyl), mean)
apply(mtcars[ , -2], 2, function(col) tapply(col, INDEX=mtcars$cyl, FUN=mean))

但那非常笨重。