我使用来自https://github.com/tensorflow/models/blob/master/official/resnet/imagenet_main.py的代码通过修改类的数量来进行二进制分类。该模型经过培训,没有任何问题,并提供了良好的准确性。
在下一步中,我想恢复经过训练的模型进行预测。我按照TensorFlow的“保存和恢复”教程进行操作。但是,我必须以标准SavedModel
格式导出我的模型(而不是自动保存的tf.estimator.Estimator
模型)。我在代码中添加了serving_input_reciever_fn
:
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_exapmle_tensor')
receiver_tensors = {"predictor_inputs": serialized_tf_example}
feature_spec = {"image": tf.FixedLenFeature((), tf.string)}
features = tf.parse_example(serialized_tf_example, feature_spec, example_names='input')
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
在model_fn
我添加了这个来声明导出输出:
predict_output = {
'pred_output_class': tf.argmax(logits, axis=1),
'pred_output_prob': tf.nn.softmax(logits, name='softmax_tensor')
}
export_output = {'predict_output': tf.estimator.export.PredictOutput(predict_output)}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, export_outputs=export_output)
在主要功能中,我在训练和验证步骤之后添加了这一行:
resnet_classifier.export_savedmodel(FLAGS.export_dir, serving_input_receiver_fn)
经过培训和验证,我得到了这个错误:
ValueError: Shape must be rank 1 but is rank 0 for 'ParseExample/ParseExample' (op: 'ParseExample') with input shapes: [?], [], [], [0].
当然,尚未导出预期的标准模型。我想serving_input_receiver_fn
中的任何内容都是错误的。可能输入类型与model_fn
的输入类型不匹配。我该如何定义这个功能?
更新: 我尝试使用'tf.estimator.export.build_raw_serving_input_receiver_fn'为模型提供预处理的原始数据。 main函数中的代码:
feature_spec = {"input_image": tf.placeholder(dtype=tf.string, shape=[None, 224, 224, 3], name='input')}
input_receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec)
resnet_classifier.export_savedmodel(export_dir_base=FLAGS.export_dir,serving_input_receiver_fn=input_receiver_fn, as_text=True)
然后我收到了这个错误:
Traceback (most recent call last):
File "classification_main.py", line 306, in <module>
tf.app.run(argv=[sys.argv[0]] + unparsed)
File "/home/ding/.virtualenvs/cv-py2/local/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "classification_main.py", line 301, in main
resnet_classifier.export_savedmodel(export_dir_base=FLAGS.export_dir,serving_input_receiver_fn=input_receiver_fn, as_text=True)
File "/home/ding/.virtualenvs/cv-py2/local/lib/python2.7/site-packages/tensorflow/python/estimator/estimator.py", line 511, in export_savedmodel
config=self.config)
File "/home/ding/.virtualenvs/cv-py2/local/lib/python2.7/site-packages/tensorflow/python/estimator/estimator.py", line 694, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "classification_main.py", line 184, in resnet_model_fn
inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))
File "/home/ding/projektpraktikum/tensorflow_ws/classification/resnet_model.py", line 249, in model
inputs = tf.transpose(inputs, [0, 3, 1, 2])
File "/home/ding/.virtualenvs/cv-py2/local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 1336, in transpose
ret = gen_array_ops.transpose(a, perm, name=name)
File "/home/ding/.virtualenvs/cv-py2/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 5694, in transpose
"Transpose", x=x, perm=perm, name=name)
File "/home/ding/.virtualenvs/cv-py2/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 513, in _apply_op_helper
raise err
TypeError: Failed to convert object of type <type 'dict'> to Tensor. Contents: {'input_image': <tf.Tensor 'input:0' shape=(?, 224, 224, 3) dtype=string>}. Consider casting elements to a supported type.
答案 0 :(得分:0)
在第一个示例中,输入形状设置为[None]
,表示任何向量(serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_exapmle_tensor')
,并且听起来像是将单个字符串作为标量传递。您可以将其包裹起来在列表中输入(为您提供单元素向量),或将形状更改为[]
以获得标量。
在第二个示例中,dtype
仍为string
,但听起来您需要float32
或其他数字类型才能直接提供图像。
答案 1 :(得分:0)
我终于得到了答案:
在训练过程中,您需要指定export_dir参数以在训练后保存模型。保存的文件夹(graph_pb_path)有两部分(一个是名为变量的文件夹,一个是save_model.pb) )
运行以下代码以恢复模型并进行预测
with tf.Session(graph=tf.Graph()) as sess:
tf.saved_model.loader.load(sess,["serve"], graph_pb_path)
graph = tf.get_default_graph()
inputs = graph.get_tensor_by_name('input_tensor:0')
model = graph.get_tensor_by_name('resnet_model/final_dense:0')
res = sess.run(model, {inputs:img})
注意:要测试N张图像,您需要在以下文件中更改参数batch_size: tensorflow models export