我有一个基于我之前question的问题。下面的代码运行正常,它告诉我整个行中是否存在search_string
。我怎么能修改最后一行,以便它提供匹配数而不是1或0?例如,对于第一行,它应返回4,因为我的search_string
出现在该行的4个位置。
sales = [{'account': 'Jones LLC jones', 'Jan': '150', 'Feb': '200', 'Mar': '140 jones jones'},
{'account': 'Alpha Co', 'Jan': 'Jones', 'Feb': '210', 'Mar': '215'},
{'account': 'Blue Inc', 'Jan': '50', 'Feb': '90', 'Mar': '95' }]
df = pd.DataFrame(sales)
df
search_string = 'Jones'
(df.apply(lambda x: x.str.contains(search_string))
.sum(axis=1).astype(int))
答案 0 :(得分:2)
您可以使用 <TextBlock x:Name="status_1" HorizontalAlignment="Right" Margin="288,95,0,0" TextWrapping="Wrap" Text="" VerticalAlignment="Top" FontFamily="/InstallerPanes;component/App_Plugins/FontAwesomeIconsDD/assets/font-awesome/fonts/#FontAwesome" Visibility="Visible" RenderTransformOrigin="0.5,0.5">
<TextBlock.RenderTransform>
<RotateTransform Angle="0"/>
</TextBlock.RenderTransform>
</TextBlock>
和findall
:
.str.len
输出:
sales = [{'account': 'Jones LLC jones', 'Jan': '150', 'Feb': '200', 'Mar': '140 jones jones'},
{'account': 'Alpha Co', 'Jan': 'Jones', 'Feb': '210', 'Mar': '215'},
{'account': 'Blue Inc', 'Jan': '50', 'Feb': '90', 'Mar': '95' }]
df = pd.DataFrame(sales)
df
search_string = 'jones' #Note changed to lowercase j to find more data.
(df.apply(lambda x: x.str.findall(search_string).str.len())
.sum(axis=1).astype(int))
将@Vaishali编辑添加到解决方案中:
0 3
1 0
2 0
dtype: int32
输出:
df.apply(lambda x: x.str.lower().str.findall(search_string).str.len()).sum(axis=1).astype(int)
答案 1 :(得分:1)
使用上一个question中的代码,我们只需将any
方法更改为sum
方法即可。将所有1加起来有效地计算给定行中出现的次数(轴= 1)。
## added and extra Jones into row 1 for 'Jan' column
sales = [{'account': 'Jones LLC', 'Jan': 'Jones', 'Feb': '200', 'Mar': '140'},
{'account': 'Alpha Co', 'Jan': 'Jones', 'Feb': '210', 'Mar': '215'},
{'account': 'Blue Inc', 'Jan': '50', 'Feb': '90', 'Mar': '95' }]
df = pd.DataFrame(sales)
df_list = []
for search_string in ['Jones', 'Co', 'Alpha']:
#use above method but rename the series instead of setting to
# a columns. The append to a list.
df_list.append(df.apply(lambda x: x.str.contains(search_string))
.sum(axis=1) ## HERE IS SUM in place of any
.astype(int)
.rename(search_string))
#concatenate the list of series into a DataFrame with the original df
df = pd.concat([df] + df_list, axis=1)
df
Out[2]:
Feb Jan Mar account Jones Co Alpha
0 200 Jones 140 Jones LLC 2 0 0
1 210 Jones 215 Alpha Co 1 1 1
2 90 50 95 Blue Inc 0 0 0