我正在研究我的最终项目,使用CNN进行人脸识别,我是这个领域的新人,正在寻找你的建议......
我已经在keras中建立CNN模型并在Faces94上进行训练,我的准确率为90.97%
现在,我正在尝试绘制CRO,FAR,FRR
我尝试了很多代码,但没有任何作用。你能帮帮我吗?
PFB我的代码:
import keras
from keras import backend as K
import os
from keras.layers.advanced_activations import LeakyReLU
from __future__ import print_function
from keras.datasets import mnist
import matplotlib.pylab as plt
from importlib import reload
def set_keras_backend(backend):
if K.backend() != backend:
os.environ['KERAS_BACKEND'] = backend
reload(K)
assert K.backend() == backend
set_keras_backend("tensorflow")
DATA = joblib.load(open('Data.sav', 'rb'))
LABEL = joblib.load(open('Lable.sav', 'rb'))
print(DATA.shape)
print(LABEL.shape)
print(tf.__version__)
X_train, X_test, y_train, y_test = train_test_split(DATA, LABEL, test_size=0.30, random_state=45)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
print(X_train[0])
X_train = np.reshape(X_train,(X_train.shape[0],200,180,1))
X_test = np.reshape(X_test,(X_test.shape[0],200,180,1))
# convert the data from binary to float
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
model = Sequential()
model.add(Conv2D(32, kernel_size=(5,5), strides=(1, 1),
activation='relu',
input_shape=([200,180,1])))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2,2)))
#添加另一个2D卷积层和2D最大池化层,具有64个输出通道
model.add(Conv2D(64,(5,5), activation='relu'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2,2)))
#添加另一个2D卷积层和2D最大池化层,具有128个输出通道
model.add(Conv2D(128,(5,5), activation='relu'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.30))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(72, activation='softmax'))
# When we compile the model, we declare the loss function and the optimizer
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
# Train the model
hist = model.fit(X_train, Y_train,batch_size=32,epochs=12, verbose=1, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test, verbose=0)
print("%s: %.2f%%" % ('Accuracy', score[1]*100))
答案 0 :(得分:0)
当然!有一个代码片段已发布here用于AUC计算,但您可以对其进行调整以获得FRR和FAR(+details)。 为了存储计算值,您可以实现一些callback并在最后绘制它们。
# AUC for a binary classifier
def auc(y_true, y_pred):
ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
binSizes = -(pfas[1:]-pfas[:-1])
s = ptas*binSizes
return K.sum(s, axis=0)
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# N = total number of negative labels
N = K.sum(1 - y_true)
# FP = total number of false alerts, alerts from the negative class labels
FP = K.sum(y_pred - y_pred * y_true)
return FP/N
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# P = total number of positive labels
P = K.sum(y_true)
# TP = total number of correct alerts, alerts from the positive class labels
TP = K.sum(y_pred * y_true)
return TP/P