对于赋值,我需要生成一个包含100个随机生成的字节值的数组,范围从0到10(例如{10,2,3,2,7,5 ...})。我已经能够生成随机字节值的数组,但我不知道如何使值在0-10之间。这是我到目前为止生成数组的原因:
byte[] array = new byte[100];
Random rand = new Random();
rand.nextBytes(array);
System.out.print(Arrays.toString(array));
答案 0 :(得分:-1)
这可以通过将Random.nextInt()转换为def buildModel(info, training_data, training_targets):
graph = tf.Graph()
with graph.as_default():
# numBatches is passed in from Python once per Epoch.
batch_size = tf.placeholder(tf.float32, name = 'batch_size')
# Initializers for loop variables for tf.while_loop
batchCounter = tf.Variable(0, dtype=tf.float32, trainable=False)
lossList = tf.Variable(tf.zeros([0,1]), trainable=False)
# In a full example, I'd normalize my data here. And possibly shuffle
tf_training_data = tf.constant(training_data, dtype=tf.float32)
tf_training_targets = tf.constant(training_targets, dtype=tf.float32)
# For brevity, I'll spare the definitions of my variables. Because tf.Variables
# are essentially treated as globals in the model and are manipulated directly (like with tf.apply)
# they can reside outside runMinibatch, the body of tf.while_loop.
# weights_1 =
# biases_1 =
# etc.
def moreMinibatches(batchCount, lossList):
return (batchCount + 1) * batch_size <= len(training_data)
def runMinibatch(batchCount, lossList):
# These tensors and ops have to be defined inside runMinibatch, otherwise they're not updated as tf.wile_loop loops. This means
# slices, model definition, loss tensor, and training op.
dat_batch = tf.slice(tf_training_data, [tf.cast(batchCounter * batch_size, tf.int32) , 0], [tf.cast(batch_size, tf.int32), -1])
targ_batch = tf.slice(tf_training_targets, [tf.cast(batchCounter * batch_size, tf.int32) , 0], [tf.cast(batch_size, tf.int32), -1])
# Here's where you'd define the model as a function of weights and biases above and dat_batch
# model = <insert here>
loss = tf.reduce_mean(tf.squared_difference(model, targ_batch))
optimizer = tf.train.AdagradOptimizer() # for example
train_op = optimizer.minimize(while_loss, name='optimizer')
# control_dependences ensures that train_op is run before return
# even though the return values don't explicitly depend on it.
with tf.control_dependencies([train_op]):
return batchCount + 1, tf.concat([lossList, [[while_loss]]],0)
# So, the idea is that this trains a full epoch without returning to Python.
trainMinibatches = tf.while_loop(moreMinibatches, runMinibatch, [minibatchCounter, lossList]
shape_invariants=[batchCounter.get_shape(), tf.TensorShape(None)])
return (graph,
{'trainMinibatches' : trainAllMinibatches,
'minibatchCounter' : minibatchCounter,
'norm_loss' : norm_loss,
} )
numEpochs = 100 # e.g.
minibatchSize = 32 #
# training_dataset = <data here>
# training_targets = <targets here>
graph, ops = buildModel(info, training_dataset, training_targets,
minibatch_size)
with tf.Session(graph=graph, config=config) as session:
tf.global_variables_initializer().run()
for i in range(numEpochs):
# This op will train on as all minibatches that fit in the full dataset. finalBatchCount with be the number of
# complete minibatches in the dataset. lossList is a list of each step's minibatches.
finalBatchCount, lossList = session.run(ops['trainAllMinibatches'],
feed_dict={'batch_size:0':minibatchSize})
print('minibatch losses at Epoch', i, ': ', lossList)
来完成,byte
会返回0到0但不包括参数的随机数。
byte[] array = new byte[100];
Random rand = new Random();
for(int i = 0; i < 100; ++i) {
array[i] = (byte) rand.nextInt(11);
}
System.out.print(Arrays.toString(array));