如何正确使用`cv2.imshow`作为`cv2.distanceTransform`返回的浮点图像?

时间:2018-01-18 22:16:42

标签: python opencv image-processing

cv2.imshow正在发生一些奇怪的事情。我正在编写一段代码并想知道为什么我的一个操作不起作用(通过观察cv2.imshow来诊断)。在恼怒的情况下,我最终将相同的图像写入文件,其中看起来很好。为什么cv2.imshow显示二进制图像(下面的第一个图像),而cv2.imwrite按预期写入灰度图像(第二个图像)?我以前从未遇到过显示灰度图像的问题!

cv2.imshow('Latest', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

distTransform = cv2.distanceTransform(src=image,distanceType=cv2.DIST_L2,maskSize=5)
cv2.imwrite('distanceTransform.png', distTransform)

cv2.imshow('Latest', distTransform)
cv2.waitKey(0)
cv2.destroyAllWindows()

这是cv2.imshow显示的图像: distanceTransform.png as displayed by cv2.imshow (also the same as the input image)

这是imwrite保存的图像: distanceTransform.png as written by imwrite

1 个答案:

答案 0 :(得分:10)

使用cv2.imshow时,您应该知道:

imshow(winname, mat) -> None
. The function may scale the image, depending on its depth:
. - If the image is 8-bit unsigned, it is displayed as is.
. - If the image is 16-bit unsigned or 32-bit integer, the pixels are divided by 256. 
    That is, the value range [0,255\*256] is mapped to [0,255].
. - If the image is 32-bit or 64-bit floating-point, the pixel values are multiplied by 255. That is, the
.   value range [0,1] is mapped to [0,255].

函数 distaceTransform 返回类型float。因此,当直接显示dist时,它首先乘以255,然后映射到[0,255]。所以结果就像二进制图像一样。 (0*255=>0, 1*255=>255, ...*255=>255)

要正确显示

(1)您可以将float dist剪辑为[0,255]并将数据类型更改为np.uint8 <{1}}

cv2.convertScaleAbs

(2)你也可以将float dist标准化为[0,255]并将数据类型改为dist1 = cv2.convertScaleAbs(dist)

cv2.normalize

这是熊猫的一个例子:

enter image description here

结果:

enter image description here

完整代码:

dist2 = cv2.normalize(dist, None, 255,0, cv2.NORM_MINMAX, cv2.CV_8UC1)