考虑给你一个总结如下的交叉:
kdat <- data.frame(positive = c(8, 4), negative = c(3, 6),
row.names = c("positive", "negative"))
kdat
#> positive negative
#> positive 8 3
#> negative 4 6
现在你要计算Cohen的Kappa,这是一个统计数据来确定两个评估者之间的协议。以此格式提供数据,您可以使用psych::cohen.kappa
:
psych::cohen.kappa(kdat)$kappa
#> Warning in any(abs(bounds)): coercing argument of type 'double' to logical
#> [1] 0.3287671
让我感到烦恼,因为我更喜欢我的数据长而薄,这让我可以使用irr::kappa2
。一个类似的功能,我喜欢任意的原因。所以我组装了这个函数来重新格式化我的数据:
longify_xtab <- function(x) {
nm <- names(x)
# Convert to table
x_tab <- as.table(as.matrix(x))
# Just in case there are now rownames, required for conversion
rownames(x_tab) <- nm
# Use appropriate method to get a df
x_df <- as.data.frame(x_tab)
# Restructure df in a painful and unsightly way
data.frame(lapply(x_df[seq_len(ncol(x_df) - 1)], function(col) {
rep(col, x_df$Freq)
}))
}
该函数返回以下格式:
longify_xtab(kdat)
#> Var1 Var2
#> 1 positive positive
#> 2 positive positive
#> 3 positive positive
#> 4 positive positive
#> 5 positive positive
#> 6 positive positive
#> 7 positive positive
#> 8 positive positive
#> 9 negative positive
#> 10 negative positive
#> 11 negative positive
#> 12 negative positive
#> 13 positive negative
#> 14 positive negative
#> 15 positive negative
#> 16 negative negative
#> 17 negative negative
#> 18 negative negative
#> 19 negative negative
#> 20 negative negative
#> 21 negative negative
...让你通过irr::kappa2
来计算Kappa:
irr::kappa2(longify_xtab(kdat))$value
#> [1] 0.3287671
我的问题是:
是否有更好的方法(在基础R或包中)?这对我来说是一个相对简单的问题,但是通过尝试解决它,我意识到这很奇怪,至少在我脑海里。
答案 0 :(得分:3)
kdat <- data.frame(positive = c(8, 4),
negative = c(3, 6),
row.names = c("positive", "negative"))
library(tidyverse)
kdat %>%
rownames_to_column() %>% # set row names as a variable
gather(rowname2,value,-rowname) %>% # reshape
rowwise() %>% # for every row
mutate(value = list(1:value)) %>% # create a series of numbers based on the value
unnest(value) %>% # unnest the counter
select(-value) # remove the counts
# # A tibble: 21 x 2
# rowname rowname2
# <chr> <chr>
# 1 positive positive
# 2 positive positive
# 3 positive positive
# 4 positive positive
# 5 positive positive
# 6 positive positive
# 7 positive positive
# 8 positive positive
# 9 negative positive
# 10 negative positive
# # ... with 11 more rows
答案 1 :(得分:2)
以下是来自http://www.cookbook-r.com/Manipulating_data/Converting_between_data_frames_and_contingency_tables/的一些公共域代码,我过去常常这样做。
# Convert from data frame of counts to data frame of cases.
# `countcol` is the name of the column containing the counts
countsToCases <- function(x, countcol = "Freq") {
# Get the row indices to pull from x
idx <- rep.int(seq_len(nrow(x)), x[[countcol]])
# Drop count column
x[[countcol]] <- NULL
# Get the rows from x
x[idx, ]
}