没有名为numbapro的模块

时间:2018-01-18 16:44:26

标签: python numba-pro

我运行了我在CUDA Python简介页面上阅读的代码: -

import numpy as np
from timeit import default_timer as timer
from numbapro import vectorize

@vectorize(["float32(float32, float32)"], target='gpu')
def VectorAdd(a, b):
        return a + b

def main():
    N = 32000000

    A = np.ones(N, dtype=np.float32)
    B = np.ones(N, dtype=np.float32)
    C = np.zeros(N, dtype=np.float32)

    start = timer()
    C = VectorAdd(A, B)
    vectoradd_timer = timer() - start

    print("C[:5] = " + str(C[:5]))
    print("C[-5:] = " + str(C[-5:]))

    print("VectorAdd took %f seconds" % vectoradd_timer)

if __name__ == '__main__':
    main()

我在终端上收到以下错误: -

dtn34@dtn34-ubuntu:~/Python$ python asd.py
Traceback (most recent call last):
  File "asd.py", line 3, in <module>
    from numbapro import vectorize
ImportError: No module named numbapro

它应该使用gpu运行代码,但我收到了这个错误。我已经安装了anaconda,更新了conda,使用conda安装加速,安装了cudatoolkit,使用conda安装了numba。 我尝试使用python2和python3

进行编译

我该怎么办?

2 个答案:

答案 0 :(得分:7)

知道了。正如WarrenWeckesser和Robert Crovella所指出的那样,NumbaPro已被弃用,所有功能都转移到了numba。 因此,你应该写numba

而不是numbapro
from numba import vectorize

此外,目标需要设置为&#39; cuda&#39;而不是&#39; gpu&#39;

@vectorize(["float32(float32, float32)"], target='cuda')
def VectorAdd(a, b):
        return a + b

答案 1 :(得分:0)

修改后,我试图同时在CPU和GPU中运行它,CPU的速度比GPU快

CPU中的第一个:

import numpy as np
from timeit import  default_timer as timer
# from numba import vectorize
# @vectorize(["float32(float32, float32)"], target='cuda')

def VectorAdd(a ,b):
    return a + b

def main():
    N = 32000000
    A = np.ones(N, dtype=np.float32)
    B = np.ones(N, dtype=np.float32)
    C = np.ones(N, dtype=np.float32)

    srart = timer()
    C = VectorAdd(A,B)
    vectoradd_time = timer() - srart
    print ("C[:5] = " + str(C[:5]))
    print ("C[:-5] = " + str(C[:-5]))
    print ('vectoradd_time %f second' % vectoradd_time)
if __name__== '__main__':
    main()

时间:

vectoradd_time 0.046457 second

GPU中的第二个:

import numpy as np
from timeit import default_timer as timer
from numba import vectorize

@vectorize(["float32(float32, float32)"], target='cuda')


def VectorAdd(a, b):
        return a + b

def main():
    N = 32000000

    A = np.ones(N, dtype=np.float32)
    B = np.ones(N, dtype=np.float32)
    C = np.zeros(N, dtype=np.float32)

    start = timer()
    C = VectorAdd(A, B)
    vectoradd_timer = timer() - start

    print("C[:5] = " + str(C[:5]))
    print("C[-5:] = " + str(C[-5:]))

    print("VectorAdd took %f seconds" % vectoradd_timer)

if __name__ == '__main__':
    main()

时间:

VectorAdd took 0.240731 seconds

此结果取决于您的CPU规格。