为什么pandas.DataFrame.mean()有效,但pandas.DataFrame.std()不会覆盖相同的数据

时间:2018-01-16 22:58:28

标签: python pandas numpy

我试图弄清楚为什么pandas.DataFrame.mean()函数在ndarray的ndarray上工作,但是pandas.DataFrame.std()不会覆盖相同的数据。以下是最低限度的示例。

x = np.array([1,2,3])
y = np.array([4,5,6])
df = pd.DataFrame({"numpy": [x,y]})

df["numpy"].mean() #works as expected
Out[231]: array([ 2.5,  3.5,  4.5])

df["numpy"].std() #does not work as expected
Out[231]: TypeError: setting an array element with a sequence.

但是,如果我通过

进行
df["numpy"].values.mean() #works as expected
Out[231]: array([ 2.5,  3.5,  4.5])

df["numpy"].values.std() #works as expected
Out[233]: array([ 1.5,  1.5,  1.5])

调试信息:

df["numpy"].dtype
Out[235]: dtype('O')

df["numpy"][0].dtype
Out[236]: dtype('int32')

df["numpy"].describe()
Out[237]: 
count             2
unique            2
top       [1, 2, 3]
freq              1
Name: numpy, dtype: object

df["numpy"]
Out[238]: 
0    [1, 2, 3]
1    [4, 5, 6]
Name: numpy, dtype: object

1 个答案:

答案 0 :(得分:2)

假设您有以下原始DF(在单元格中包含相同形状的numpy数组):

In [320]: df
Out[320]:
  file      numpy
0    x  [1, 2, 3]
1    y  [4, 5, 6]

将其转换为以下格式:

In [321]: d = pd.DataFrame(df['numpy'].values.tolist(), index=df['file'])

In [322]: d
Out[322]:
      0  1  2
file
x     1  2  3
y     4  5  6

现在您可以自由使用所有Pandas / Numpy / Scipy的力量:

In [323]: d.sum(axis=1)
Out[323]:
file
x     6
y    15
dtype: int64

In [324]: d.sum(axis=0)
Out[324]:
0    5
1    7
2    9
dtype: int64

In [325]: d.mean(axis=0)
Out[325]:
0    2.5
1    3.5
2    4.5
dtype: float64

In [327]: d.std(axis=0)
Out[327]:
0    2.12132
1    2.12132
2    2.12132
dtype: float64