使用textblob对csv文件进行情感分析

时间:2018-01-16 18:03:37

标签: python csv sentiment-analysis textblob

我在CSV文件上使用情感分析,输出打印出句子的极性和主观性。如何以表格形式获得输出以及句子的分类为正或负或中性添加到它?

    import csv
    from textblob import TextBlob

    infile = 'sentence.csv'

    with open(infile, 'r') as csvfile:
        rows = csv.reader(csvfile)
    for row in rows:
        sentence = row[0]
        blob = TextBlob(sentence)
        print (sentence)
        print (blob.sentiment.polarity, blob.sentiment.subjectivity)

我的代码的输出是:

    i am very happy
    1.0 1.0
    its very sad
    -0.65 1.0
    they are bad
    -0.6999999999999998 0.6666666666666666
    hate the life
    -0.8 0.9
    she is so fantastic
    0.4 0.9

提前致谢。

1 个答案:

答案 0 :(得分:1)

我建议创建一个列表列表并将其导入到pandas数据帧中以获取表结构

j

这将为您提供一个名为import csv from textblob import TextBlob import pandas as pd import numpy as np infile = 'sentence.csv' bloblist = list() with open(infile, 'r') as csvfile: rows = csv.reader(csvfile) for row in rows: sentence = row[0] blob = TextBlob(sentence) bloblist.append((sentence,blob.sentiment.polarity, blob.sentiment.subjectivity)) 的列表列表,将其转换为像

这样的pandas数据帧
bloblist

添加后,您可以创建如下自定义计算:

df = pd.DataFrame(bloblist, columns = ['sentence','sentiment','polarity'])