对于任何可以提供帮助的人 - 我的代码在Asp/Net Core 2.0
中正常工作,可以使用Novell.Directory.Ldap.NETStandard (2.3.8)
库向LDAP添加条目。我也更新属性,一切都没有错误。但是,当我更新密码时,它不需要。我无法使用我刚刚通过代码设置的相同密码登录。我想知道是否有人遇到过此问题,我是否需要以特殊方式对其进行编码和/或执行任何其他步骤?
这是我的代码看起来像 - 非常简单,它可以正常工作而不会导致错误:
modList.Add(new LdapModification(LdapModification.REPLACE, new LdapAttribute("pwdLastSet", "-1")));
modList.Add(new LdapModification(LdapModification.REPLACE, new LdapAttribute("userPassword", newPassword)));
LdapModification[] mods = new LdapModification[modList.Count];
mods = (LdapModification[])modList.ToArray(typeof(LdapModification));
string dn = String.Format("CN={0},CN={1},DC=WPD,DC=Local", displayName, "Users");
_conn.Modify(dn, mods);
谢谢! 克雷格
答案 0 :(得分:0)
我没有使用“ userPassword”属性,而是使用了“ unicodePwd”属性并更改了编码,并且可以正常工作。 重要要点是将密码用双引号引起来。
library(caret)
library(gridExtra)
library(grid)
library(ggridges)
library(ggthemes)
library(iml)
library(partykit)
library(rpart)
library(tidyverse)
theme_set(theme_minimal())
set.seed(88)
kfolds <- 3
load_dataset <- function() {
dataset <- read_csv("https://gist.githubusercontent.com/dmpe/bfe07a29c7fc1e3a70d0522956d8e4a9/raw/7ea71f7432302bb78e58348fede926142ade6992/pima-indians-diabetes.csv", col_names=FALSE) %>%
mutate(X9=as.factor(ifelse(X9== 1, "diabetes", "nondiabetes")))
X = dataset[, 1:8]
Y = dataset$X9
return(list(dataset, X, Y))
}
compute_rf_model <- function(dataset) {
index <- createDataPartition(dataset$X9,
p=0.8,
list=FALSE,
time=1)
dataset_train <- dataset[index,]
dataset_test <- dataset[-index,]
fit_control <- trainControl(method="repeatedcv",
number=kfolds,
repeats=1,
classProbs=TRUE,
savePredictions=TRUE,
verboseIter=FALSE,
allowParallel=FALSE,
summaryFunction=defaultSummary)
rf_model <- train(X9~.,
data=dataset_train,
method="rf",
preProcess=c("center","scale"),
trControl=fit_control,
metric="Accuracy",
verbose=FALSE)
return(list(rf_model, dataset_train, dataset_test))
}
main <- function() {
data <- load_dataset()
dataset <- data[[1]]
X <- data[[2]]
Y <- data[[3]]
rf_model_data <- compute_rf_model(dataset)
rf_model <- rf_model_data[[1]]
dataset_train <- rf_model_data[[2]]
dataset_test <- rf_model_data[[3]]
X <- dataset_train %>%
select(-X9) %>%
as.data.frame()
predictor <- Predictor$new(rf_model, data=X, y=dataset_train$X9)
ice <- FeatureEffect$new(predictor, feature="X2", center.at=min(X$X2), method="pdp+ice")
ice_plot_glucose <- ice$plot() +
scale_color_discrete(guide="none") +
scale_y_continuous("Predicted Diabetes")
ice <- FeatureEffect$new(predictor, feature="X4", center.at=min(X$X4), method="pdp+ice")
ice_plot_insulin <- ice$plot() +
scale_color_discrete(guide="none") +
scale_y_continuous("Predicted Diabetes")
grid.arrange(ice_plot_glucose, ice_plot_insulin, ncol=1)
}
if (!interactive()) {
main()
} else if (identical(environment(), globalenv())) {
quit(status = main())
}