我在下面定义了相当简单的函数func1()
,主要由两个for
块组成。
它适用于较小的N
值,但由于for
块组合在一起,它会非常快速地增长到N>1000
的分钟数。
如何使用numpy
广播来改善此功能的性能?
import numpy as np
import time as t
def func1(A_triang, B_triang):
aa = []
for i, A_tr in enumerate(A_triang):
for j, B_tr in enumerate(B_triang):
# Absolute value of differences.
abs_diff = abs(np.array(A_tr) - np.array(B_tr))
# Store the sum of the differences and the indexes
aa.append([sum(abs_diff), i, j])
return aa
# Generate random data with the proper format
N = 500
A_triang = np.random.uniform(0., 20., (N, 3))
A_triang[:, 0] = np.ones(N)
B_triang = np.random.uniform(0., 20., (N, 3))
B_triang[:, 0] = np.ones(N)
# Call function.
s = t.clock()
aa = func1(A_triang, B_triang)
print(t.clock() - s)
答案 0 :(得分:2)
这是一个NumPy broadcasting
,利用indices_merged_arr_generic_using_cp
的修改版本作为索引分配部分 -
import functools
# Based on https://stackoverflow.com/a/46135435/ @unutbu
def indices_merged_arr_generic_using_cp(arr):
"""
Based on cartesian_product
http://stackoverflow.com/a/11146645/190597 (senderle)
"""
shape = arr.shape
arrays = [np.arange(s, dtype='int') for s in shape]
broadcastable = np.ix_(*arrays)
broadcasted = np.broadcast_arrays(*broadcastable)
rows, cols = functools.reduce(np.multiply, broadcasted[0].shape),\
len(broadcasted)+1
out = np.empty(rows * cols, dtype=arr.dtype)
start, end = rows, 2*rows
for a in broadcasted:
out[start:end] = a.reshape(-1)
start, end = end, end + rows
out[0:rows] = arr.flatten()
return out.reshape(cols, rows).T
def func1_numpy_broadcasting(a,b):
val = np.abs(a[:,None,:] - b).sum(-1)
return indices_merged_arr_generic_using_cp(val)
如果输入的第一列始终为1s
,那么我们将不需要计算它们的差异,因为它们的差异总和将为零。因此,为了获得val
,我们可以简单地使用最后两列 -
val = np.abs(a[:,1,None] - b[:,1]) + np.abs(a[:,2,None] - b[:,2])
这会节省内存,因为我们不会以这种方式3D
。
使用numexpr
模块 -
import numexpr as ne
def func1_numexpr_broadcasting(a,b):
a3D = a[:,None,:]
val = ne.evaluate('sum(abs(a3D - b),2)')
return indices_merged_arr_generic_using_cp(val)
利用第一列为1s
的事实,我们会有 -
def func1_numexpr_broadcasting_v2(a,b):
a1 = a[:,1,None]
b1 = b[:,1]
a2 = a[:,2,None]
b2 = b[:,2]
val = ne.evaluate('abs(a1-b1) + abs(a2-b2)')
return indices_merged_arr_generic_using_cp(val)