如何从特定目录或文件夹导入预先下载的MNIST数据集?

时间:2018-01-15 05:13:54

标签: python tensorflow machine-learning deep-learning mnist

我从LeCun网站下载了MNIST数据集。我想要的是编写Python代码以提取gzip并直接从目录中读取数据集,这意味着我不再需要下载或访问MNIST站点。

欲望过程: 访问文件夹/目录 - > extract gzip - >读数据集(一个热编码)

怎么做?由于几乎所有教程都必须访问LeCun或Tensoflow站点才能下载和读取数据集。提前谢谢!

3 个答案:

答案 0 :(得分:6)

此张量流程调用

from tensorflow.examples.tutorials.mnist import input_data
input_data.read_data_sets('my/directory')

...如果您已经拥有该文件,则不会下载任何

但如果由于某种原因你希望自己解压缩,请按照以下方式进行操作:

from tensorflow.contrib.learn.python.learn.datasets.mnist import extract_images, extract_labels

with open('my/directory/train-images-idx3-ubyte.gz', 'rb') as f:
  train_images = extract_images(f)
with open('my/directory/train-labels-idx1-ubyte.gz', 'rb') as f:
  train_labels = extract_labels(f)

with open('my/directory/t10k-images-idx3-ubyte.gz', 'rb') as f:
  test_images = extract_images(f)
with open('my/directory/t10k-labels-idx1-ubyte.gz', 'rb') as f:
  test_labels = extract_labels(f)

答案 1 :(得分:4)

如果提取了MNIST data,则可以直接使用NumPy将其低级加载:

def loadMNIST( prefix, folder ):
    intType = np.dtype( 'int32' ).newbyteorder( '>' )
    nMetaDataBytes = 4 * intType.itemsize

    data = np.fromfile( folder + "/" + prefix + '-images-idx3-ubyte', dtype = 'ubyte' )
    magicBytes, nImages, width, height = np.frombuffer( data[:nMetaDataBytes].tobytes(), intType )
    data = data[nMetaDataBytes:].astype( dtype = 'float32' ).reshape( [ nImages, width, height ] )

    labels = np.fromfile( folder + "/" + prefix + '-labels-idx1-ubyte',
                          dtype = 'ubyte' )[2 * intType.itemsize:]

    return data, labels

trainingImages, trainingLabels = loadMNIST( "train", "../datasets/mnist/" )
testImages, testLabels = loadMNIST( "t10k", "../datasets/mnist/" )

并转换为热编码:

def toHotEncoding( classification ):
    # emulates the functionality of tf.keras.utils.to_categorical( y )
    hotEncoding = np.zeros( [ len( classification ), 
                              np.max( classification ) + 1 ] )
    hotEncoding[ np.arange( len( hotEncoding ) ), classification ] = 1
    return hotEncoding

trainingLabels = toHotEncoding( trainingLabels )
testLabels = toHotEncoding( testLabels )

答案 2 :(得分:3)

我将展示如何从头开始加载(以更好地理解),并展示如何通过matplotlib.pyplot来显示数字图像

import cPickle
import gzip
import numpy as np
import matplotlib.pyplot as plt

def load_data():
    path = '../../data/mnist.pkl.gz'
    f = gzip.open(path, 'rb')
    training_data, validation_data, test_data = cPickle.load(f)
    f.close()

    X_train, y_train = training_data[0], training_data[1]
    print X_train.shape, y_train.shape
    # (50000L, 784L) (50000L,)

    # get the first image and it's label
    img1_arr, img1_label = X_train[0], y_train[0]
    print img1_arr.shape, img1_label
    # (784L,) , 5

    # reshape first image(1 D vector) to 2D dimension image
    img1_2d = np.reshape(img1_arr, (28, 28))
    # show it
    plt.subplot(111)
    plt.imshow(img1_2d, cmap=plt.get_cmap('gray'))
    plt.show()

enter image description here

您还可以通过以下示例函数将标签矢量化到a 10-dimensional unit vector

def vectorized_result(label):
    e = np.zeros((10, 1))
    e[label] = 1.0
    return e

矢量化以上标签:

print vectorized_result(img1_label)
# output as below:
[[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 1.]
 [ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]

如果要将其转换为CNN输入,则可以像这样重新调整其形状:

def load_data_v2():
    path = '../../data/mnist.pkl.gz'
    f = gzip.open(path, 'rb')
    training_data, validation_data, test_data = cPickle.load(f)
    f.close()

    X_train, y_train = training_data[0], training_data[1]
    print X_train.shape, y_train.shape
    # (50000L, 784L) (50000L,)

    X_train = np.array([np.reshape(item, (28, 28)) for item in X_train])
    y_train = np.array([vectorized_result(item) for item in y_train])

    print X_train.shape, y_train.shape
    # (50000L, 28L, 28L) (50000L, 10L, 1L)