如何在R ggplot中平滑线条

时间:2018-01-14 18:28:37

标签: r ggplot2

我试图将观察值绘制为与预期值相对应的点,如下所示:

d <- data.frame(
    ranks = 1:9,
    observed = c(0.736, 0.121, 0.067, 0.034, 0.026, 0.015, 0.001, 0.001, 0.000),
    expected = c(0.735, 0.136, 0.051, 0.025, 0.015, 0.009, 0.006, 0.005, 0.003)
)

ggplot(d, aes(x=ranks, y=observed)) +
  geom_point(size=2.2) +
  geom_line(aes(x=ranks, y=expected), size=0.8, colour='red')

enter image description here

这是正确的,但我更喜欢让线条很好地平滑(没有肘部)。将geom_smooth()loessgam一起使用并没有真正帮助,因为两者都过度平滑(以不同的方式)。有什么建议吗?

更新:如果这有用,请按照以下方法生成预期值:

# BACIS POWER FUNCTION:
fPow <- function(x, a, b) {a * x^b}

# INITIALIZE PARAMETERS:
est1 <- coef(nls(observed ~ fPow(ranks, a, b),
    start=c(a=1, b=1), data=d))

# FITTING:
nlfit1 <- nls(observed ~ fPow(ranks, a, b),
    start=est1, data=d)

# EXPECTED VALUES:
expected <- predict(nlfit1)

1 个答案:

答案 0 :(得分:4)

您可以尝试的一种解决方案是强制执行预期点的样条曲线:

library(ggplot2)
library(ggalt)

d <- data.frame(
  ranks = 1:9,
  observed = c(0.736, 0.121, 0.067, 0.034, 0.026, 0.015, 0.001, 0.001, 0.000),
  expected = c(0.735, 0.136, 0.051, 0.025, 0.015, 0.009, 0.006, 0.005, 0.003)
)

ggplot(d, aes(x = ranks, y = observed)) +
  geom_point(size = 2.2) +
  geom_xspline(aes(y = expected), size = 0.8,
               spline_shape = -.15, colour = 'red')

enter image description here

这种方法总是有效,但我不是数据可视化样条的忠实粉丝,因为它们构成了我们没有的数据。

我认为更好的方法是插入小数等级的预测公式:

fPow <- function(x, a, b) {a * x^b}
est1 <- coef(nls(observed ~ fPow(ranks, a, b),
                 start=c(a=1, b=1), data=d))
nlfit1 <- nls(observed ~ fPow(ranks, a, b),
              start=est1, data=d)

d2 <- data.frame(ranks = seq(1, 9, by = 0.1))
expected <- predict(nlfit1, d2)
d2 <- data.frame(d2, expected)

ggplot(d, aes(x = ranks, y = observed)) +
  geom_point(size = 2.2) +
  geom_line(data = d2, aes(x = ranks, y = expected), size = 0.8, colour = 'red')

enter image description here