我在嵌套列表中有一组数据,这样顶层列表的每个成员都有描述符(但不一定是相同的描述符),然后是子列表,那些子节点可以有子节点,依此类推。孩子们的深度是任意的。一个小小的例子:
family <- list(
list(name = "Alice", age = 40, eyes = "blue", children = list(
list(name = "Bob", age = 20, eyes = "blue"),
list(name = "Charlie", age = 18, eyes = "brown")
)),
list(name = "Dan", age = 12, eyes = "green"),
list(name = "Erin", age = 69, eyes = "green", children = list(
list(name = "Frank", age = 45, eyes = "blue", children = list(
list(name = "George", age = 24, eyes = "blue", children = list(
list(name = "Harry", age = 2, eyes = "green")
)),
list(name = "Ingrid", age = 22, eyes = "brown", hair = "brown"),
list(name = "Jack", age = 29, eyes = "brown")
)),
list(name = "Karen", age = 43),
list(name = "Larry", age = 21, eyes = "blue")
))
)
> str(family, max.level = 2)
List of 3
$ :List of 4
..$ name : chr "Alice"
..$ age : num 40
..$ eyes : chr "blue"
..$ children:List of 2
$ :List of 3
..$ name: chr "Dan"
..$ age : num 12
..$ eyes: chr "green"
$ :List of 4
..$ name : chr "Erin"
..$ age : num 69
..$ eyes : chr "green"
..$ children:List of 3
理想情况下,我想创建一个数据框,使每行都是一个系列成员,每列都是列表中的一个属性:
name age eyes
1 Alice 40 blue
2 Bob 20 blue
3 Charlie 18 brown
(etc)
但目前还不清楚如何递归到任意深度。我已经设法使用map(family, ~ .$name)
让顶级成员,但我不明白如何更深入。一些成员没有孩子,这很复杂。
我已经阅读了purrr文档,但我找不到任何看起来会有所帮助的内容。也许我没有使用正确的术语。
建议表示赞赏。谢谢!
答案 0 :(得分:7)
您始终可以递归地遍历列表并收集信息。除了来自map_dfr
的{{1}}我的解决方案使用purrr
中的defaults
来处理失踪的眼睛或头发颜色的情况。
plyr
将此内容应用到列表中时:
get_people <- function(x) {
if (is.null(x)) return(NULL)
if (!is.null(x$name)) { # if there's a name, we're at the level of a person
children <- x$children
x$children <- NULL
row <- data.frame(plyr::defaults(x, list(age = NA, eyes = NA, hair = NA)),
stringsAsFactors = FALSE)
rbind(row, get_people(children))
}
else {
purrr::map_dfr(x, get_people)
}
}
答案 1 :(得分:2)
这是一个迭代children
元素的选项,将人们收集到一个扁平列表中:
flatten_family <- function(x){
ppl <- list()
rflatten <- function(y){
lapply(y, function(z){
if(exists('children', z)) {
ppl <<- c(ppl, list(z[-which(names(z) == 'children')]))
rflatten(z$children)
} else {
ppl <<- c(ppl, list(z))
}
})
ppl
}
rflatten(x)
}
dplyr::bind_rows(flatten_family(family))
#> # A tibble: 12 x 4
#> name age eyes hair
#> <chr> <dbl> <chr> <chr>
#> 1 Alice 40.0 blue <NA>
#> 2 Bob 20.0 blue <NA>
#> 3 Charlie 18.0 brown <NA>
#> 4 Dan 12.0 green <NA>
#> 5 Erin 69.0 green <NA>
#> 6 Frank 45.0 blue <NA>
#> 7 George 24.0 blue <NA>
#> 8 Harry 2.00 green <NA>
#> 9 Ingrid 22.0 brown brown
#> 10 Jack 29.0 brown <NA>
#> 11 Karen 43.0 <NA> <NA>
#> 12 Larry 21.0 blue <NA>