我尝试使用Kafka Consumer和SparkStreaming在DStream上进行ETL,但是出现了以下错误。你能帮我解决这个问题吗?感谢。
KafkaCardCount.scala:56:28: value reduceByKey is not a member of org.apache.spark.streaming.dstream.DStream[Any]
[error] val wordCounts = etl.reduceByKey(_ + _)
[error] ^
[error] one error found
[error] (compile:compileIncremental) Compilation failed
[error] Total time: 7 s, completed Jan 14, 2018 2:52:23 PM
我有这个示例代码。我发现很多文章建议添加import import org.apache.spark.streaming.StreamingContext._
,但似乎它对我不起作用。
package example
import org.apache.spark.streaming.StreamingContext._
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Durations, StreamingContext}
val ssc = new StreamingContext(sparkConf, Durations.seconds(5))
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
val etl = stream.map(r => {
val split = r.value.split("\t")
val id = split(1)
val numStr = split(4)
if (numStr.matches("\\d+")) {
val num = numStr.toInt
val tpl = (id, num)
tpl
} else {
()
}
})
// Create the counts per game
val wordCounts = etl.reduceByKey(_ + _)
wordCounts.print()
我有这个build.sbt。
lazy val root = (project in file(".")).
settings(
inThisBuild(List(
organization := "example",
scalaVersion := "2.11.8",
version := "0.1.0-SNAPSHOT"
)),
name := "KafkaCardCount",
libraryDependencies ++= Seq (
"org.apache.spark" %% "spark-core" % "2.1.0",
"org.apache.spark" % "spark-streaming_2.11" % "2.1.0",
"org.apache.spark" %% "spark-streaming-kafka-0-10-assembly" % "2.1.0"
)
)
assemblyMergeStrategy in assembly := {
case PathList("META-INF", xs @ _*) => MergeStrategy.discard
case x => MergeStrategy.first
}
答案 0 :(得分:2)
你的问题在这里:
else {
()
}
(String, Int)
和Unit
的常见超类型为Any
。
您需要做的是通过类似于success(if)子句的类型表示处理失败。例如:
else ("-1", -1)
.filter { case (id, res) => id != "-1" && res != -1 }
.reduceByKey(_ + _)