我在Spark(2.2.0)上使用python3。我想将我的UDF应用于指定的字符串列表。
df = ['Apps A','Chrome', 'BBM', 'Apps B', 'Skype']
def calc_app(app, app_list):
browser_list = ['Chrome', 'Firefox', 'Opera']
chat_list = ['WhatsApp', 'BBM', 'Skype']
sum = 0
for data in app:
name = data['name']
if name in app_list:
sum += 1
return sum
calc_appUDF = udf(calc_app)
df = df.withColumn('app_browser', calc_appUDF(df['apps'], browser_list))
df = df.withColumn('app_chat', calc_appUDF(df['apps'], chat_list))
但它失败并返回:'不支持的文字类型类java.util.ArrayList'
答案 0 :(得分:0)
如果我正确理解了您的要求,那么您应该尝试这个
from pyspark.sql.functions import udf, col
#sample data
df_list = ['Apps A','Chrome', 'BBM', 'Apps B', 'Skype']
df = sqlContext.createDataFrame([(l,) for l in df_list], ['apps'])
df.show()
#some lists definition
browser_list = ['Chrome', 'Firefox', 'Opera']
chat_list = ['WhatsApp', 'BBM', 'Skype']
#udf definition
def calc_app(app, app_list):
if app in app_list:
return 1
else:
return 0
def calc_appUDF(app_list):
return udf(lambda l: calc_app(l, app_list))
#add new columns
df = df.withColumn('app_browser', calc_appUDF(browser_list)(col('apps')))
df = df.withColumn('app_chat', calc_appUDF(chat_list)(col('apps')))
df.show()
示例输入:
+------+
| apps|
+------+
|Apps A|
|Chrome|
| BBM|
|Apps B|
| Skype|
+------+
输出是:
+------+-----------+--------+
| apps|app_browser|app_chat|
+------+-----------+--------+
|Apps A| 0| 0|
|Chrome| 1| 0|
| BBM| 0| 1|
|Apps B| 0| 0|
| Skype| 0| 1|
+------+-----------+--------+