答案 0 :(得分:1)
boolean indexing
使用Index.duplicated
:
df = pd.DataFrame({'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')}, index=[0,0,1,2,2,2])
print (df)
A B C D E F
0 a 4 7 1 5 a
0 b 5 8 3 3 a
1 c 4 9 5 6 a
2 d 5 4 7 9 b
2 e 5 2 1 2 b
2 f 4 3 0 4 b
df = df[df.index.duplicated()]
print (df)
A B C D E F
0 b 5 8 3 3 a
2 e 5 2 1 2 b
2 f 4 3 0 4 b
详情:
print (df.index.duplicated())
[False True False False True True]
答案 1 :(得分:0)
这是使用groupby的方法:
rst = df.reset_index()
df['int_index'] = df.reset_index().index
firsts = df.groupby(df.index).first()
filt = df[~df['int_index'].isin(firsts['int_index'])]
missing = df[df.index.value_counts() == 1]
res = pd.concat([drp, missing]).sort_index().drop('int_index', axis=1)