获取python多处理中当前正在执行的输入的索引

时间:2018-01-11 23:31:03

标签: python multiprocessing

    from multiprocessing import Pool
    with Pool(processes=5) as p:
        p.starmap(name_of_function, all_inputs)

我有一段像上面这样并行执行函数的代码。假设all_inputs有10,000个元素,我想知道当前正在执行哪个元素,例如10,000中有100个...有没有办法获得该指数?

8 个答案:

答案 0 :(得分:8)

#!/bin/bash # Store date in a variable, note the $( ) surrounding the command today="$(date '+%Y_%m_%d')" old=0 # read the old value from file if it exists if [ -f /tmp/$today.dblogout ]; then old="$(< /tmp/$today.dblogout)" fi # store just the value without any header new=$(echo "select count(status) from alarm where status ='open'" | my-db) # the command above will return the following for example #34 # response is not empty if [ -z "$new" ]; then echo "old count: $old, new count: $new" else echo "new value is empty. old value: $old" fi # store the new value echo "$new" > /tmp/$today.dblogout 中的工作人员流程是multiprocessing.Pool的一个实例,它会让an internal counter标识自己,您可以将此计数器与OS process id一起使用:

Process

的产率:

import os
from multiprocessing import current_process, Pool


def x(a):
    p = current_process()
    print('process counter:', p._identity[0], 'pid:', os.getpid())


if __name__ == '__main__':
    with Pool(2) as p:
        r = p.map(x, range(4))
    p.join()

答案 1 :(得分:5)

您可以使用多处理中的current_process方法。如果这不够准确,您甚至可以使用name

通过uuid流程
from multiprocessing import current_process


def x(a):
    print(current_process(), a)
    return a*a

with Pool(5) as p:
    p.map(x, [1,2,3,4,5]

答案 2 :(得分:4)

IIUC,您也可以传入索引。 (从@ user1767754窃取设置)(如果这不是你想要的,请告诉我。)

from multiprocessing import Pool

arr = [1,2,3,4,5]
arr_with_idx = zip(arr, range(len(arr)))

def x(a, idx):
    print(idx)
    return a*a

with Pool(5) as p:
    p.starmap(x, arr_with_idx)

或者更简洁,使用enumerate

from multiprocessing import Pool

arr = [1,2,3,4,5]

def x(idx, a):  # different here
    print(idx)
    return a*a

with Pool(5) as p:
    p.starmap(x, enumerate(arr))

starmap将解压缩每个元组,您可以打印出索引部分。

答案 3 :(得分:2)

我建议将索引与其他参数一起传递。您可以使用enumerate或者与生成器表达式结合使用,将值添加到现有参数中。这里的代码假设all_inputs是一个可迭代的元组:

with Pool(processes=5) as p:
    p.starmap(name_of_function, ((i,) + args for i, args in enumerate(all_inputs)))

您可以从这个一般主题的一系列变体中进行选择。例如,您可以将索引放在参数的末尾,而不是放在开头(只需将(i,) + args交换为args + (i,))。

答案 4 :(得分:1)

发现哪个进程处理值100的最简单方法是在池启动之前将数组分成相等的部分。这使您可以控制池中的哪些进程处理数组的哪个部分(因为您要为每个进程传递预定义的 start,end 索引)。

例如,如果all_inputs有50个元素,其值介于80到130之间,则8核CPU的简单作业分区将返回以下索引对:

Process #0 will work on indexes [0:5] with values: 80 - 85
Process #1 will work on indexes [6:11] with values: 86 - 91
Process #2 will work on indexes [12:17] with values: 92 - 97
Process #3 will work on indexes [18:23] with values: 98 - 103
Process #4 will work on indexes [24:29] with values: 104 - 109
Process #5 will work on indexes [30:35] with values: 110 - 115
Process #6 will work on indexes [36:41] with values: 116 - 121
Process #7 will work on indexes [42:50] with values: 122 - 130

当游泳池开始时,您已经知道哪一个将负责处理值100。

这种方法的成功依赖于jobDiv()根据输入数组的大小和可用的CPU核心数量,为进程分配数据。

源代码

import multiprocessing as mp    

# processArray(): a parallel function that process an array based on start and 
#   end index positions.
def processArray(procId, array, indexes):
    startIdx, endIdx = indexes
    print("  Process #" + str(procId) + " startIdx=" + str(startIdx), " endIdx=" + str(endIdx))

    # Do some work:
    for i in range(startIdx, endIdx+1):
        print("    Process #" + str(procId) + " is computing index " + str(i), " with value " + str(array[i]))


# jobDiv(): performs a simple job division between available CPU cores
def jobDiv(inputArray, numCPUs):
    jobs = []
    arrayLength = len(inputArray)

    jobRange = int(arrayLength / numCPUs)
    extra = arrayLength - (jobRange * numCPUs)

    prevEnd = 0
    for c in range(numCPUs):
        endIdx = (c * jobRange) + jobRange - 1
        if (c == (numCPUs-1)):
            endIdx += extra

        startIdx = prevEnd
        if ( (c > 0) and (startIdx+1 < arrayLength) ):
            startIdx += 1

        jobs.append( (startIdx, endIdx) )
        prevEnd = endIdx

    return jobs


if __name__ == '__main__':
    # Initialize dataset for multiprocessing with 50 numbers, with values from 80 to 131
    nums = range(80, 131)

    # How many CPU cores can be used for this dataset
    numCPUs = mp.cpu_count()
    if (numCPUs > len(nums)):
        numCPUs = len(nums)

    # This function returns a list of tuples containing array indexes for
    # each process to work on. When nums has 100 elements and numCPUs is 8,
    # it returns the following list:
    #   (0, 11), (12, 23), (24, 35), (36, 47), (48, 59), (60, 71), (72, 83), (84, 99)
    indexes = jobDiv(nums, numCPUs)

    # Prepare parameters for every process in the pool, where each process gets one tuple of:
    #   (cpu_id, array, array_indexes)
    jobArgs = []
    for id, arg in enumerate(indexes):
        start, end = arg
        print("Process #" + str(id) + " will work on indexes [" + str(start) + ":" + str(end) +
              "] with values: " + str(nums[start]) + " - " + str(nums[end]))
        jobArgs.append( (id, nums, arg) )

    print("* Starting Pool")

    # For every process, send the data for processing along with it's respective tuple of parameters
    with mp.Pool(processes=numCPUs) as p:
        sums = p.starmap(processArray, jobArgs)

    print("* Finished")

<强>输出

* Starting Pool
  Process #0 startIdx=0  endIdx=5
    Process #0 is computing index 0  with value 80
    Process #0 is computing index 1  with value 81
    Process #0 is computing index 2  with value 82
    Process #0 is computing index 3  with value 83
    Process #0 is computing index 4  with value 84
    Process #0 is computing index 5  with value 85
  Process #1 startIdx=6  endIdx=11
    Process #1 is computing index 6  with value 86
    Process #1 is computing index 7  with value 87
    Process #1 is computing index 8  with value 88
    Process #1 is computing index 9  with value 89
    Process #1 is computing index 10  with value 90
    Process #1 is computing index 11  with value 91
  Process #2 startIdx=12  endIdx=17
    Process #2 is computing index 12  with value 92
    Process #2 is computing index 13  with value 93
    Process #2 is computing index 14  with value 94
    Process #2 is computing index 15  with value 95
    Process #2 is computing index 16  with value 96
    Process #2 is computing index 17  with value 97
  Process #3 startIdx=18  endIdx=23
    Process #3 is computing index 18  with value 98
    Process #3 is computing index 19  with value 99
    Process #3 is computing index 20  with value 100
    Process #3 is computing index 21  with value 101
    Process #3 is computing index 22  with value 102
  Process #4 startIdx=24  endIdx=29
    Process #3 is computing index 23  with value 103
    Process #4 is computing index 24  with value 104
    Process #4 is computing index 25  with value 105
    Process #4 is computing index 26  with value 106
    Process #4 is computing index 27  with value 107
    Process #4 is computing index 28  with value 108
    Process #4 is computing index 29  with value 109
  Process #5 startIdx=30  endIdx=35
    Process #5 is computing index 30  with value 110
    Process #5 is computing index 31  with value 111
    Process #5 is computing index 32  with value 112
    Process #5 is computing index 33  with value 113
    Process #5 is computing index 34  with value 114
    Process #5 is computing index 35  with value 115
  Process #6 startIdx=36  endIdx=41
    Process #6 is computing index 36  with value 116
    Process #6 is computing index 37  with value 117
    Process #6 is computing index 38  with value 118
  Process #7 startIdx=42  endIdx=50
    Process #6 is computing index 39  with value 119
    Process #6 is computing index 40  with value 120
    Process #7 is computing index 42  with value 122
    Process #6 is computing index 41  with value 121
    Process #7 is computing index 43  with value 123
    Process #7 is computing index 44  with value 124
    Process #7 is computing index 45  with value 125
    Process #7 is computing index 46  with value 126
    Process #7 is computing index 47  with value 127
    Process #7 is computing index 48  with value 128
    Process #7 is computing index 49  with value 129
    Process #7 is computing index 50  with value 130
* Finished

值得指出的是显而易见的,并说每个流程都知道目前正在处理的是什么值,但是,main()并不

main()只知道每个进程将处理的索引范围,但它不知道(实时)这些进程当前正在处理哪些值。

如果您需要main()在流程运行时访问此信息,最好在Queue中设置main()并在单独的{Thread上运行池开始前{1}}然后,确保将Queue对象作为传递给每个进程的参数的一部分发送,这样它们就可以共享同一个对象并存储他们正在处理的数据。

答案 5 :(得分:0)

如果您在给定时间点在现代多核CPU上运行代码,您的工作进程将并行执行多个任务。您可以使用队列来实现自定义协议,您的工作人员将让主进程知道,自己开始和完成哪个任务(任务索引)。

import os
import time
import queue
import random
import multiprocessing

def fn(st_queue, i):
    st_queue.put((multiprocessing.current_process().name, i))
    time.sleep(random.random())  # your long calculation
    st_queue.put((multiprocessing.current_process().name, None))
    return i ** 2

def main():
    status = {}
    st_queue = multiprocessing.Manager().Queue()

    result = []
    pool = multiprocessing.Pool(4)
    args = zip([st_queue] * 20, range(20))
    async_res = pool.starmap_async(
        fn, args, callback = lambda r: result.append(r))

    while not async_res.ready():
        try:
            msg = st_queue.get(True, 0.1)
        except queue.Empty:
            pass
        else:
            status.update([msg])
            print(status)      
    print(result.pop())
    pool.close()

if __name__ == '__main__':
    main()

状态字典如下所示:

{
    'ForkPoolWorker-4': None, 
    'ForkPoolWorker-5': 16, 
    'ForkPoolWorker-2': 18, 
    'ForkPoolWorker-3': 15
}

答案 6 :(得分:0)

如果您乐意报告工作流程中的索引,并且您不介意不按顺序报告它们,那么您可以使用其他人建议的枚举方法。如果您想跟踪主流程中的工作(例如,管理状态栏)和/或您需要知道已启动的项目总数,那么您需要将每个工作人员报告返回给父母一开始。这可以通过管道完成,如下所示。

我不确定您是否要报告项目的索引或已启动的项目总数(它们可能不按顺序开始),因此我会报告这两项。

# dummy data and function
all_inputs = list(zip(range(10), range(20,30)))
def name_of_function(a, b):
    return a+b

# main code
from multiprocessing import Pool, Pipe, Lock

parent_conn, child_conn = Pipe()
lock = Lock()

def wrapper(idx, args):
    with lock:
        child_conn.send(idx)
    return name_of_function(*args)

with Pool(processes=5) as p:
    p.starmap_async(wrapper, enumerate(all_inputs))
    # receive status updates
    num_items = len(all_inputs)
    for i in range(num_items):
        idx = parent_conn.recv()
        print("processing index {} ({}/{})".format(idx, i+1, num_items))

child_conn.close()
parent_conn.close()

# output (note that items may be started out of sequence):
# processing index 0 (1/10)
# processing index 1 (2/10)
# processing index 2 (3/10)
# processing index 3 (4/10)
# processing index 5 (5/10)
# processing index 6 (6/10)
# processing index 4 (7/10)
# processing index 7 (8/10)
# processing index 8 (9/10)
# processing index 9 (10/10)

请注意,这使用starmap_async而不是starmap,以便在子进程运行时继续执行主线程。或者,您可以使用starmap并启动一个单独的线程来报告进度,如下所示:

from threading import Thread
from multiprocessing import Pool, Pipe, Lock
parent_conn, child_conn = Pipe()
lock = Lock()

def receive_updates(num_items):
    for i in range(num_items):
        idx = parent_conn.recv()
        print("processing index {} ({}/{})".format(idx, i+1, num_items))

def wrapper(idx, args):
    with lock:
        child_conn.send(idx)
    return name_of_function(*args)

# launch another thread to receive the results, since the main thread
# will wait for starmap
result_thread = Thread(target=receive_updates, args=(len(all_inputs),))
result_thread.Daemon = True  # stop if main thread is killed
result_thread.start()

# your original code
with Pool(processes=5) as p:
    p.starmap(wrapper, all_inputs)

child_conn.close()
parent_conn.close()

答案 7 :(得分:0)

如果您满足于知道每个项目何时完成(而不是开始),您可以使用>> import numpy as np >> mu = np.matrix(np.array([1, 1])) >> print(mu) [[1 1]] >> sigma = np.matrix(np.eye(2) * 3) >> print(sigma) [[ 3. 0.] [ 0. 3.]] >> a = mu * sigma * mu.T >> a.item((0, 0)) 6.0 进行回调,如下所示:

apply_async

结果:

# dummy data and function
all_inputs = list(zip(range(10), range(20,30)))
def name_of_function(a, b):
    return a+b

# main code
from multiprocessing import Pool

num_items = len(all_inputs)
num_done = 0
def handle_result(res):
    global num_done
    num_done += 1
    print('finished item {} of {}.'.format(num_done, num_items))

p = Pool(5)
for args in all_inputs:
    p.apply_async(name_of_function, args, callback=handle_result)
p.close()
p.join() # wait for tasks to finish

请注意,结果不一定与finished item 1 of 10. finished item 2 of 10. finished item 3 of 10. finished item 4 of 10. finished item 5 of 10. finished item 6 of 10. finished item 7 of 10. finished item 8 of 10. finished item 9 of 10. finished item 10 of 10. 的顺序相同。如果您需要确切知道处理了哪个项目,可以枚举这样的参数:

all_inputs

结果:

from multiprocessing import Pool

num_items = len(all_inputs)
num_done = 0
def handle_result(idx):
    global num_done
    num_done += 1
    print('finished index {} ({}/{}).'.format(idx, num_done, num_items))

def wrapper(idx, args):
    name_of_function(*args)
    return idx

p = Pool(5)
for args in enumerate(all_inputs):
    p.apply_async(wrapper, args, callback=handle_result)
p.close()
p.join() # wait for tasks to finish