keras模型的平均权重

时间:2018-01-11 16:48:44

标签: tensorflow neural-network keras deep-learning keras-layer

当我训练几个具有不同初始化的相同架构的模型时,如何在Keras模型中平均权重?

现在我的代码看起来像这样?

datagen = ImageDataGenerator(rotation_range=15,
                             width_shift_range=2.0/28,
                             height_shift_range=2.0/28
                            )

epochs = 40 
lr = (1.234e-3)
optimizer = Adam(lr=lr)

main_input = Input(shape= (28,28,1), name='main_input')

sub_models = []

for i in range(5):

    x = Conv2D(32, kernel_size=(3,3), strides=1)(main_input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPool2D(pool_size=2)(x)

    x = Conv2D(64, kernel_size=(3,3), strides=1)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = MaxPool2D(pool_size=2)(x)

    x = Conv2D(64, kernel_size=(3,3), strides=1)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    x = Flatten()(x)

    x = Dense(1024)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.1)(x)

    x = Dense(256)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.4)(x)

    x = Dense(10, activation='softmax')(x)

    sub_models.append(x)

x = keras.layers.average(sub_models)

main_output = keras.layers.average(sub_models)

model = Model(inputs=[main_input], outputs=[main_output])

model.compile(loss='categorical_crossentropy', metrics=['accuracy'],
              optimizer=optimizer)

print(model.summary())

plot_model(model, to_file='model.png')

filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
tensorboard = TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=True)
callbacks = [checkpoint, tensorboard]

model.fit_generator(datagen.flow(X_train, y_train, batch_size=128),
                    steps_per_epoch=len(X_train) / 128,
                    epochs=epochs,
                    callbacks=callbacks,
                    verbose=1,
                    validation_data=(X_test, y_test))

所以现在我只对最后一层进行平均,但是我希望在分别训练每一层之后平均所有层的权重。

谢谢!

2 个答案:

答案 0 :(得分:6)

因此,我们假设[ { "CD_DIRECAO": "400" }, { "DT_INI_DIRECAO": "1900-01-01" }, { "CD_DEPT": "370" }, { "DT_INI_DEPT": "1900-01-01" } ] 是您模型的集合。首先 - 收集所有权重:

models

现在 - 创建一个新的平均权重:

weights = [model.get_weights() for model in models]

剩下的就是在新模型中设置这些权重:

new_weights = list()

for weights_list_tuple in zip(*weights):
    new_weights.append(
        [numpy.array(weights_).mean(axis=0)\
            for weights_ in zip(*weights_list_tuple)])

当然 - 平均权重可能不是一个好主意,但如果你尝试 - 你应该遵循这种方法。

答案 1 :(得分:0)

我无法评论已接受的答案,但是要使其与tensorflow 2.0tf.keras上一起工作,我必须将循环中的列表制作成一个numpy数组:

new_weights = list()
for weights_list_tuple in zip(*weights): 
    new_weights.append(
        np.array([np.array(w).mean(axis=0) for w in zip(*weights_list_tuple)])
    )

如果需要对不同的输入模型进行不同的加权,则np.array(w).mean(axis=0)必须替换为np.average(np.array(w),axis=0, weights=relative_weights),其中relative_weights是每个模型具有权重因子的数组。