我需要从大型数据库创建多个(几千个)重采样数据集。我有三个分类变量。站点(S),Transect(T),Quadrat(Q)。响应变量是Value(V),它是特定S,T和&的结果。 Q组合。每个站点的每个样带都有四边形。我在下面贴了一个缩写的数据集。
S T Q V
A 1 1 8
A 1 2 5
A 1 3 0
A 2 1 0
A 2 2 15
A 2 3 0
A 3 1 0
A 3 2 25
A 3 3 0
B 1 1 0
B 1 2 1
B 1 3 0
B 2 1 33
B 2 2 1
B 2 3 2
B 3 1 0
B 3 2 207
B 3 3 0
C 1 1 0
C 1 2 1
C 1 3 0
C 2 1 45
C 2 2 33
C 2 3 0
C 3 1 0
C 3 2 1
C 3 3 0
对于给定的站点,重新采样的数据集将包含从横断面1到n的四元组的##,其中##将是每个站点每个横断面(T)的样方数(Q)(S) 。我不是试图基于S,T和&amp ;;重新采样数据集。问:我希望能够根据我定义的条件重新采样用户定义的行数。例如,如果我选择基于每个站点(S)的每个横断面(T)的2个样方(Q)进行重新采样,我设想重新采样的数据集看起来像下面的示例。
S T Q V
A 1 1 8
A 1 3 0
A 2 1 0
A 2 2 15
A 3 2 25
A 3 3 0
B 1 2 1
B 1 3 0
B 2 2 1
B 2 3 2
B 3 1 0
B 3 2 207
C 1 1 0
C 1 3 0
C 2 1 45
C 2 3 0
C 3 2 1
C 3 3 0
如果这没有意义,请告诉我,我会修改,直到确实如此。谢谢你的帮助!
答案 0 :(得分:1)
考虑by
按 Site 和 Transect 因素对数据帧进行切片,然后对随机行进行采样:
set.seed(444)
quads <- 2
# BUILD LIST OF SUBSETTED RANDOM SAMPLED DATAFRAMES
df_list <- by(df, df[c("S", "T")], FUN=function(df) df[sample(nrow(df), quads),])
# STACK ALL DATAFRAMES INTO ONE FINAL DF
sample_df <- do.call(rbind, df_list)
# SORT DATAFRAME BY S AND T
sample_df <- with(sample_df, sample_df[order(S, T),])
# RESET ROW NAMES
row.names(sample_df) <- NULL
sample_df
# S T Q V
# 1 A 1 1 8
# 2 A 1 3 0
# 3 A 2 2 15
# 4 A 2 1 0
# 5 A 3 1 0
# 6 A 3 3 0
# 7 B 1 2 1
# 8 B 1 1 0
# 9 B 2 3 2
# 10 B 2 1 33
# 11 B 3 1 0
# 12 B 3 2 207
# 13 C 1 1 0
# 14 C 1 2 1
# 15 C 2 1 45
# 16 C 2 3 0
# 17 C 3 3 0
# 18 C 3 2 1
数据
txt = '
S T Q V
A 1 1 8
A 1 2 5
A 1 3 0
A 2 1 0
A 2 2 15
A 2 3 0
A 3 1 0
A 3 2 25
A 3 3 0
B 1 1 0
B 1 2 1
B 1 3 0
B 2 1 33
B 2 2 1
B 2 3 2
B 3 1 0
B 3 2 207
B 3 3 0
C 1 1 0
C 1 2 1
C 1 3 0
C 2 1 45
C 2 2 33
C 2 3 0
C 3 1 0
C 3 2 1
C 3 3 0'
df = read.table(text=txt, header=TRUE)
要构建随机生成的数据框,只需扩展四边形并通过lapply
运行它:
max_quads <- 3
quads <- replicate(1000, sample(1:max_quads, 1))
df_list <- lapply(quads, function(q) {
by_list <- by(df, df[c("S", "T")], FUN=function(df) df[sample(nrow(df), q),]))
sample_df <- do.call(rbind, by_list)
sample_df <- with(sample_df, sample_df[order(S, T),])
row.names(sample_df) <- NULL
return(sample_df)
})