我需要使用c ++中的intel线程构建块来实现并行mergesort的最佳代码
答案 0 :(得分:2)
首先,让我说根据我的经验,tbb :: parallel_sort()非常有效,并且比我即将发布的代码快一点(至少对于数千个元素的数量级的输入而言)我已经测试了)。
话虽如此,我认为以下代码正是您所寻找的。变量应该是自我解释的,代码中的文档应该解释其余部分 -
并行化需要这样做:
#include<tbb/parallel_invoke.h>
如果您选择使用可能更快运行的Concurrency :: parallel_invoke(),那么请包含以下内容:
#include<ppl.h>
我推荐这些设置 -
#define MIN_ELEMENTS_FOR_RECURSION (50)
#define MIN_ELEMENTS_FOR_PARALLEL_PROCESSING (100)
以下是调用的主要功能。参数是随机访问类的开始和结束的迭代器(例如,vector,deque等)和比较函数 -
template <typename T_it, typename T_it_dereferenced>
void parallelMergeSort( T_it first, T_it last, bool (*firstLessThanSecond)(const T_it_dereferenced& a, const T_it_dereferenced& b) )
{
// create copy of container for extra space
std::vector<T_it_dereferenced> copy(first, last);
parallelMergeSortRecursive( first, last, copy.begin(), copy.end(), firstLessThanSecond );
}
这是从parallelMergeSort()递归调用的,以便对每一半进行排序 -
template <typename T_it, typename T_it_dereferenced>
void parallelMergeSortRecursive( T_it source_first, T_it source_last, T_it copy_first, T_it copy_last,
bool (*firstLessThanSecond)(const T_it_dereferenced& a, const T_it_dereferenced& b), int recursion_depth = 0 )
{
// divide the array in two, and sort the two halves
long num_elements = source_last - source_first;
if ( num_elements > MIN_ELEMENTS_FOR_RECURSION )
{
T_it source_middle = source_first + num_elements / 2;
T_it copy_middle = copy_first + num_elements / 2;
if ( num_elements > MIN_ELEMENTS_FOR_PARALLEL_PROCESSING )
{
// Concurrency::parallel_invoke() may work faster
tbb::parallel_invoke(
[=] { parallelMergeSortRecursive( source_first, source_middle, copy_first, copy_middle, firstLessThanSecond, recursion_depth + 1 ); },
[=] { parallelMergeSortRecursive( source_middle, source_last, copy_middle, copy_last, firstLessThanSecond, recursion_depth + 1 ); }
);
}
else // sort serially rather than in parallel
{
parallelMergeSortRecursive( source_first, source_middle, copy_first, copy_middle, firstLessThanSecond, recursion_depth + 1 );
parallelMergeSortRecursive( source_middle, source_last, copy_middle, copy_last, firstLessThanSecond, recursion_depth + 1 );
}
// merge the two sorted halves
// we switch source <--> target with each level of recursion.
// at even recursion depths (including zero which is the root level) we assume the source is sorted and merge into the target
if ( recursion_depth % 2 == 0 )
{
merge( source_first, copy_first, copy_middle, copy_last, firstLessThanSecond );
}
else
{
merge( copy_first, source_first, source_middle, source_last, firstLessThanSecond );
}
}
else // very few elements remain to be sorted, stop the recursion and sort in place
{
if ( recursion_depth % 2 == 0 )
{
std::stable_sort(source_first, source_last, firstLessThanSecond);
}
else
{
std::stable_sort(copy_first, copy_last, firstLessThanSecond);
}
}
}
这是从递归函数中调用的,以便合并两半 -
template <typename T_it, typename T_it_dereferenced>
void merge( T_it target_first, T_it source_first, T_it source_middle, T_it source_last,
bool (*firstLessThanSecond)(const T_it_dereferenced& a, const T_it_dereferenced& b) )
{
// source is assumed to contain two sorted sequences (from first to middle and from middle to last)
T_it source_it1 = source_first;
T_it source_it2 = source_middle;
T_it target_it = target_first;
for ( /* intentional */ ; source_it1 < source_middle && source_it2 < source_last ; ++target_it )
{
//if ( source_container[i] < source_container[j] )
if ( firstLessThanSecond(*source_it1, *source_it2) )
{
*target_it = *source_it1;
++source_it1;
}
else
{
*target_it = *source_it2;
++source_it2;
}
}
// insert remaining elements in non-completely-traversed-half into original container
// only one of these two whiles will execute since one of the conditions caused the previous while to stop
for ( /* intentional */ ; source_it1 < source_middle ; ++target_it )
{
*target_it = *source_it1;
++source_it1;
}
for ( /* intentional */ ; source_it2 < source_last ; ++target_it )
{
*target_it = *source_it2;
++source_it2;
}
}
答案 1 :(得分:1)
TBB已经包含了一种排序方法(并行快速排序),它实现得非常差(运行时至少是线性的,与处理器数量无关)。
我的建议是从现有实现端口并行合并排序。
例如,使用OpenMP的gnu并行模式排序(包含在任何带有源文件的最近的gcc中)。
只需用一些tbb并行代码替换所有#pragma omp
。