我想监视例如。在Keras训练期间的进度条和Tensorboard中的学习率。我认为必须有一种方法来指定记录哪些变量,但是在Keras website上没有立即澄清这个问题。
我想它与创建自定义Callback函数有关,但是,应该可以修改现有的进度条回调,不是吗?
答案 0 :(得分:14)
可以通过自定义指标实现。以学习率为例:
def get_lr_metric(optimizer):
def lr(y_true, y_pred):
return optimizer.lr
return lr
x = Input((50,))
out = Dense(1, activation='sigmoid')(x)
model = Model(x, out)
optimizer = Adam(lr=0.001)
lr_metric = get_lr_metric(optimizer)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['acc', lr_metric])
# reducing the learning rate by half every 2 epochs
cbks = [LearningRateScheduler(lambda epoch: 0.001 * 0.5 ** (epoch // 2)),
TensorBoard(write_graph=False)]
X = np.random.rand(1000, 50)
Y = np.random.randint(2, size=1000)
model.fit(X, Y, epochs=10, callbacks=cbks)
LR将打印在进度条中:
Epoch 1/10
1000/1000 [==============================] - 0s 103us/step - loss: 0.8228 - acc: 0.4960 - lr: 0.0010
Epoch 2/10
1000/1000 [==============================] - 0s 61us/step - loss: 0.7305 - acc: 0.4970 - lr: 0.0010
Epoch 3/10
1000/1000 [==============================] - 0s 62us/step - loss: 0.7145 - acc: 0.4730 - lr: 5.0000e-04
Epoch 4/10
1000/1000 [==============================] - 0s 58us/step - loss: 0.7129 - acc: 0.4800 - lr: 5.0000e-04
Epoch 5/10
1000/1000 [==============================] - 0s 58us/step - loss: 0.7124 - acc: 0.4810 - lr: 2.5000e-04
Epoch 6/10
1000/1000 [==============================] - 0s 63us/step - loss: 0.7123 - acc: 0.4790 - lr: 2.5000e-04
Epoch 7/10
1000/1000 [==============================] - 0s 61us/step - loss: 0.7119 - acc: 0.4840 - lr: 1.2500e-04
Epoch 8/10
1000/1000 [==============================] - 0s 61us/step - loss: 0.7117 - acc: 0.4880 - lr: 1.2500e-04
Epoch 9/10
1000/1000 [==============================] - 0s 59us/step - loss: 0.7116 - acc: 0.4880 - lr: 6.2500e-05
Epoch 10/10
1000/1000 [==============================] - 0s 63us/step - loss: 0.7115 - acc: 0.4880 - lr: 6.2500e-05
然后,您可以在TensorBoard中可视化LR曲线。
答案 1 :(得分:3)
如何将自定义值传递给TensorBoard的另一种方式(实际上是encouraged one)是通过对keras.callbacks.TensorBoard
类的继承。这使您可以应用自定义功能以获得所需的指标,并将其直接传递给TensorBoard。
以下是Adam
优化器学习率的示例:
$<TARGET_NAME:...>
答案 2 :(得分:0)
我之所以提出这个问题,是因为我想在Keras进度栏中记录更多变量。阅读这里的答案后,我就是这样做的:
class UpdateMetricsCallback(tf.keras.callbacks.Callback):
def on_batch_end(self, batch, logs):
logs.update({'my_batch_metric' : 0.1, 'my_other_batch_metric': 0.2})
def on_epoch_end(self, epoch, logs):
logs.update({'my_epoch_metric' : 0.1, 'my_other_epoch_metric': 0.2})
model.fit(...,
callbacks=[UpdateMetricsCallback()]
)
我希望它可以帮助其他人。