我有一份原始文件清单,已经过滤并删除了英文停用词:
rawDocument = ['sport british english sports american english includes forms competitive physical activity games casual organised ...', 'disaster serious disruption occurring relatively short time functioning community society involving ...', 'government system group people governing organized community often state case broad associative definition ...', 'technology science craft greek τέχνη techne art skill cunning hand λογία logia collection techniques ...']
我已经使用了
from sklearn.feature_extraction.text import TfidfVectorizer
sklearn_tfidf = TfidfVectorizer(norm='l2', min_df=0, use_idf=True, smooth_idf=False, sublinear_tf=False)
sklearn_representation = sklearn_tfidf.fit_transform(rawDocuments)
但我有一个
<4x50 sparse matrix of type '<class 'numpy.float64'>'
with 51 stored elements in Compressed Sparse Row format>
我无法解释结果。那么,我使用正确的工具还是让我改变方式?
我的目标是在每个文档中获取相关单词,以便与查询文档中的其他单词执行余弦相似。
提前谢谢。
答案 0 :(得分:1)
Pandas模块通常可用于更好地可视化您的数据:
演示:
import pandas as pd
df = pd.SparseDataFrame(sklearn_tfidf.fit_transform(rawDocument),
columns=sklearn_tfidf.get_feature_names(),
default_fill_value=0)
结果:
In [85]: df
Out[85]:
activity american art associative british ... system techne techniques technology time
0 0.25 0.25 0.000000 0.000000 0.25 ... 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.00 0.00 0.000000 0.000000 0.00 ... 0.000000 0.000000 0.000000 0.000000 0.308556
2 0.00 0.00 0.000000 0.282804 0.00 ... 0.282804 0.000000 0.000000 0.000000 0.000000
3 0.00 0.00 0.288675 0.000000 0.00 ... 0.000000 0.288675 0.288675 0.288675 0.000000
[4 rows x 48 columns]