使用Pandas groupby的Mathematica的GatherBy函数

时间:2018-01-10 08:10:22

标签: python pandas dataframe group-by pandas-groupby

我设计的功能类似于Mathematica中的GatherBy。我认为通过在Pandas中装扮groupby功能可以轻松完成。此功能将按特定的特征函数对列表进行分组。

设置

time1 = pd.date_range(start=datetime.datetime(2015, 1, 30), end=datetime.datetime(2015, 2, 5))
datedat = np.array([time1, 0.1 * numpy.arange(7), 0.2 * numpy.arange(7)]).T

print(datedat)
array([[Timestamp('2015-01-30 00:00:00', freq='D'), 0.0, 0.0],
   [Timestamp('2015-01-31 00:00:00', freq='D'), 0.1, 0.2],
   [Timestamp('2015-02-01 00:00:00', freq='D'), 0.2, 0.4],
   [Timestamp('2015-02-02 00:00:00', freq='D'), 0.3,
    0.6],
   [Timestamp('2015-02-03 00:00:00', freq='D'), 0.4, 0.8],
   [Timestamp('2015-02-04 00:00:00', freq='D'), 0.5, 1.0],
   [Timestamp('2015-02-05 00:00:00', freq='D'), 0.6,
    1.2]], dtype=object)

假设我想按年份和月份对其进行分组 - 您会看到1月和2月的数据。所以我设计了一个特色功能:

gatherf = lambda x: ((x[0].year)*1000+x[0].month)

对于每个时间数据记录,此gatherf会计算groupby的值以区分时间。

目标

我的最终目标是开发一个函数gather_by

gather_by(datedat, gatherf)

应该生成这个:

array([[[Timestamp('2015-01-30 00:00:00', freq='D'), 0.0, 0.0],
   [Timestamp('2015-01-31 00:00:00', freq='D'), 0.1, 0.2]],

   [[Timestamp('2015-02-01 00:00:00', freq='D'), 0.2, 0.4],
   [Timestamp('2015-02-02 00:00:00', freq='D'), 0.3,
    0.6],
   [Timestamp('2015-02-03 00:00:00', freq='D'), 0.4, 0.8],
   [Timestamp('2015-02-04 00:00:00', freq='D'), 0.5, 1.0],
   [Timestamp('2015-02-05 00:00:00', freq='D'), 0.6,
    1.2]]], dtype=object)

我的努力

在一般情况下,datedat可能会有超过3的列。我无法逐个对它们进行分组。所以我试过了:

datedatF2 =pandas.DataFrame({'dat':datedat,'gather_key':numpy.array(list(map(gatherf, datedat)))})

groupedall=datedatF2['dat'].groupby(datedatF2['gather_key'])

但这会导致Data must be 1-dimensional错误。我该怎么办?

2 个答案:

答案 0 :(得分:2)

输入 -

datedat

array([[Timestamp('2015-01-30 00:00:00', freq='D'), 0.0, 0.0],
       [Timestamp('2015-01-31 00:00:00', freq='D'), 0.1, 0.2],
       [Timestamp('2015-02-01 00:00:00', freq='D'), 0.2, 0.4],
       [Timestamp('2015-02-02 00:00:00', freq='D'), 0.3, 0.6],
       [Timestamp('2015-02-03 00:00:00', freq='D'), 0.4, 0.8],
       [Timestamp('2015-02-04 00:00:00', freq='D'), 0.5, 1.0],
       [Timestamp('2015-02-05 00:00:00', freq='D'), 0.6, 1.2]], dtype=object)

gatherf

lambda x: ((x[0].year) * 1000 + x [0].month) 

一种非常可靠的方法,可以根据当前方法对构建进行分组,将自定义列表/密钥传递给groupby(分组谓词不必属于数据帧!) - < / p>

key = list(map(gatherf, datedat))

r = []
for _, g in pd.DataFrame(datedat).groupby(key):
    r.append(g.values.tolist())

或者,作为列表理解 -

r = [g.values.tolist() for _, g in pd.DataFrame(datedat).groupby(key)]

np.array(r)

[[[Timestamp('2015-01-30 00:00:00', freq='D'), 0.0, 0.0],
  [Timestamp('2015-01-31 00:00:00', freq='D'), 0.1, 0.2]],
 [[Timestamp('2015-02-01 00:00:00', freq='D'), 0.2, 0.4],
  [Timestamp('2015-02-02 00:00:00', freq='D'), 0.3, 0.6],
  [Timestamp('2015-02-03 00:00:00', freq='D'), 0.4, 0.8],
  [Timestamp('2015-02-04 00:00:00', freq='D'), 0.5, 1.0],
  [Timestamp('2015-02-05 00:00:00', freq='D'), 0.6, 1.2]]]

这应该适用于任意数量的列,只要gatherf被适当地编写以匹配。

答案 1 :(得分:1)

我认为你可以通过映射函数groupby使用gatherf

datedatF2 = pd.DataFrame(datedat)

gatherf = lambda x: x[0].year*1000 + x[0].month

out = [x.values.tolist() for i, x in datedatF2.groupby(list(map(gatherf, datedat)))]
print (out)

[[[Timestamp('2015-01-30 00:00:00', freq='D'), 0.0, 0.0], 
  [Timestamp('2015-01-31 00:00:00', freq='D'), 0.1, 0.2]], 

[[Timestamp('2015-02-01 00:00:00', freq='D'), 0.2, 0.4], 
  [Timestamp('2015-02-02 00:00:00', freq='D'), 0.3, 0.6], 
  [Timestamp('2015-02-03 00:00:00', freq='D'), 0.4, 0.8], 
  [Timestamp('2015-02-04 00:00:00', freq='D'), 0.5, 1.0],
  [Timestamp('2015-02-05 00:00:00', freq='D'), 0.6, 1.2]]]

Series的第一个解决方案:

datedatF2 = pd.DataFrame(datedat)
dates = pd.to_datetime(datedatF2.iloc[:, 0])

s = dates.dt.year*1000 + dates.dt.month
print (s)
0    2015001
1    2015001
2    2015002
3    2015002
4    2015002
5    2015002
6    2015002
Name: dat0, dtype: int64

out = [x.values.tolist() for i, x in datedatF2.groupby(s)]

编辑:

第二种方法更快:

N = 100000
df = pd.DataFrame({1:pd.date_range('2015-01-01', periods=N, freq='15H'),
                   2:np.random.randint(100, size=N),
                   3:np.random.randint(100, size=N)})
datedat = df.values


In [75]: %%timeit
    ...: datedatF2 = pd.DataFrame(datedat)
    ...: dates = pd.to_datetime(datedatF2.iloc[:, 0])
    ...: s = dates.dt.year*1000 + dates.dt.month
    ...: out = [x.values.tolist() for i, x in datedatF2.groupby(s)]
    ...: 
1 loop, best of 3: 249 ms per loop

In [76]: %%timeit
    ...: datedatF2 = pd.DataFrame(datedat)
    ...: gatherf = lambda x: x[0].year*1000 + x[0].month
    ...: out = [x.values.tolist() for i, x in datedatF2.groupby(list(map(gatherf, datedat)))]
    ...: 
1 loop, best of 3: 359 ms per loop

<强>买者

性能取决于数据 - DataFrame的大小和值组的数量。但通常第二种解决方案首先要快。