我想根据x / y轴上的点数缩放markersize
matplotlib.pyplot.Axes.scatter
图。
import matplotlib.pyplot as plt
import numpy as np
vmin = 1
vmax = 11
x = np.random.randint(vmin, vmax, 5)
y = np.random.randint(vmin, vmax, 5)
fig, ax = plt.subplots()
for v in np.arange(vmin, vmax):
ax.axvline(v - 0.5)
ax.axvline(v + 0.5)
ax.axhline(v - 0.5)
ax.axhline(v + 0.5)
ax.set_xlim(vmin - 0.5, vmax + 0.5)
ax.set_ylim(vmin - 0.5, vmax + 0.5)
ax.scatter(x, y)
ax.set_aspect(1)
plt.show()
ax
始终使用相等的宽高比,并且两个轴具有相同的lim
值。
两个图中的markersize
都保留为默认值,即markersize=6
。
我的问题是,如何计算markersize
值,以便marker
触及每个单元格的边缘? (每个单元格最多有一个数据点。)
答案 0 :(得分:6)
一个简单的选择是用由PatchCollection
半径为0.5的Circles
替换散点图。
circles = [plt.Circle((xi,yi), radius=0.5, linewidth=0) for xi,yi in zip(x,y)]
c = matplotlib.collections.PatchCollection(circles)
ax.add_collection(c)
如果需要散点图,则替代方法是将标记大小更新为数据单位。
这里的简单解决方案是首先绘制一次图形,然后取轴尺寸并从中计算标记尺寸。
import matplotlib.pyplot as plt
import numpy as np
vmin = 1
vmax = 11
x = np.random.randint(vmin, vmax, 5)
y = np.random.randint(vmin, vmax, 5)
fig, ax = plt.subplots(dpi=141)
for v in np.arange(vmin, vmax):
ax.axvline(v - 0.5)
ax.axvline(v + 0.5)
ax.axhline(v - 0.5)
ax.axhline(v + 0.5)
ax.set_xlim(vmin - 0.5, vmax + 0.5)
ax.set_ylim(vmin - 0.5, vmax + 0.5)
ax.set_aspect(1)
fig.canvas.draw()
s = ((ax.get_window_extent().width / (vmax-vmin+1.) * 72./fig.dpi) ** 2)
ax.scatter(x, y, s = s, linewidth=0)
plt.show()
有关如何使用散点图标记的一些背景信息,请参阅例如: this answer。上述解决方案的缺点是将标记大小固定为绘图的大小和状态。如果轴限制将改变或绘图被缩放,散点图将再次具有错误的尺寸。
因此,以下解决方案将更加通用。 这有点牵扯,其作用与Plotting a line with width in data units类似。
import matplotlib.pyplot as plt
import numpy as np
vmin = 1
vmax = 32
x = np.random.randint(vmin, vmax, 5)
y = np.random.randint(vmin, vmax, 5)
fig, ax = plt.subplots()
for v in np.arange(vmin, vmax):
ax.axvline(v - 0.5)
ax.axvline(v + 0.5)
ax.axhline(v - 0.5)
ax.axhline(v + 0.5)
ax.set_xlim(vmin - 0.5, vmax + 0.5)
ax.set_ylim(vmin - 0.5, vmax + 0.5)
class scatter():
def __init__(self,x,y,ax,size=1,**kwargs):
self.n = len(x)
self.ax = ax
self.ax.figure.canvas.draw()
self.size_data=size
self.size = size
self.sc = ax.scatter(x,y,s=self.size,**kwargs)
self._resize()
self.cid = ax.figure.canvas.mpl_connect('draw_event', self._resize)
def _resize(self,event=None):
ppd=72./self.ax.figure.dpi
trans = self.ax.transData.transform
s = ((trans((1,self.size_data))-trans((0,0)))*ppd)[1]
if s != self.size:
self.sc.set_sizes(s**2*np.ones(self.n))
self.size = s
self._redraw_later()
def _redraw_later(self):
self.timer = self.ax.figure.canvas.new_timer(interval=10)
self.timer.single_shot = True
self.timer.add_callback(lambda : self.ax.figure.canvas.draw_idle())
self.timer.start()
sc = scatter(x,y,ax, linewidth=0)
ax.set_aspect(1)
plt.show()
(我更新了代码以使用计时器来重绘画布,因为this issue)