我最近阅读了有关结构化日志记录(here)的信息。这个想法似乎是通过将简单字符串作为一行附加到日志文件而不是JSON对象来记录。这样就可以通过自动工具分析日志文件。
Pythons logging
库可以进行结构化日志记录吗?如果没有,是否有一个“主流”解决方案(例如numpy / scipy是科学计算的主流解决方案)?我发现了structlog
,但我不确定它有多广泛。
答案 0 :(得分:4)
您是否看过python docs site section describing Implementing structured logging解释如何将python
内置记录器用于结构化日志记录?
以下是上面网站上列出的一个简单示例。
import json
import logging
class StructuredMessage(object):
def __init__(self, message, **kwargs):
self.message = message
self.kwargs = kwargs
def __str__(self):
return '%s >>> %s' % (self.message, json.dumps(self.kwargs))
m = StructuredMessage # optional, to improve readability
logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(m('message 1', foo='bar', bar='baz', num=123, fnum=123.456))
导致以下日志。
message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}
希望这有帮助。
答案 1 :(得分:1)
如果您安装python-json-logger
(288星,70叉)并拥有如下所示的日志配置(YAML),您将获得结构化日志文件。
version: 1
formatters:
detailed:
class: logging.Formatter
format: '[%(asctime)s]:[%(levelname)s]: %(message)s'
json:
class: pythonjsonlogger.jsonlogger.JsonFormatter
format: '%(asctime)s %(levelname)s %(message)s'
handlers:
console:
class: logging.StreamHandler
level: INFO
formatter: detailed
file:
class: logging.FileHandler
filename: logfile.log
level: DEBUG
formatter: json
root:
level: DEBUG
handlers:
- console
- file
您可能还希望使例外/回溯使用结构化格式。
请参阅Can I make Python output exceptions in one line / via logging?
答案 2 :(得分:0)
从 py3.2 开始,可以使用标准库执行此操作,无需外部依赖项:
from datetime import datetime
import json
import logging
import traceback
APP_NAME = 'hello world json logging'
APP_VERSION = 'git rev-parse HEAD'
LOG_LEVEL = logging._nameToLevel['INFO']
class JsonEncoderStrFallback(json.JSONEncoder):
def default(self, obj):
try:
return super().default(obj)
except TypeError as exc:
if 'not JSON serializable' in str(exc):
return str(obj)
raise
class JsonEncoderDatetime(JsonEncoderStrFallback):
def default(self, obj):
if isinstance(obj, datetime):
return obj.strftime('%Y-%m-%dT%H:%M:%S%z')
else:
return super().default(obj)
logging.basicConfig(
format='%(json_formatted)s',
level=LOG_LEVEL,
handlers=[
# if you wish to also log to a file -- logging.FileHandler(log_file_path, 'a'),
logging.StreamHandler(sys.stdout),
],
)
_record_factory_bak = logging.getLogRecordFactory()
def record_factory(*args, **kwargs) -> logging.LogRecord:
record = _record_factory_bak(*args, **kwargs)
record.json_formatted = json.dumps(
{
'level': record.levelname,
'unixtime': record.created,
'thread': record.thread,
'location': '{}:{}:{}'.format(
record.pathname or record.filename,
record.funcName,
record.lineno,
),
'exception': record.exc_info,
'traceback': traceback.format_exception(*record.exc_info) if record.exc_info else None,
'app': {
'name': APP_NAME,
'releaseId': APP_VERSION,
'message': record.getMessage(),
},
},
cls=JsonEncoderDatetime,
)
return record
logging.setLogRecordFactory(record_factory)
调用 logging.info('HELLO %s', 'WORLD')
...
... 结果为 {"level": "INFO", "unixtime": 1623532882.421775, "thread": 4660305408, "location": "<ipython-input-3-abe3276ceab4>:<module>:1", "exception": null, "traceback": null, "app": {"name": "hello world json logging", "releaseId": "git rev-parse HEAD", "message": "HELLO WORLD"}}