可以使用Pythons标准库完成结构化日志记录吗?

时间:2018-01-09 14:46:23

标签: python logging structured-logging

我最近阅读了有关结构化日志记录(here)的信息。这个想法似乎是通过将简单字符串作为一行附加到日志文件而不是JSON对象来记录。这样就可以通过自动工具分析日志文件。

Pythons logging库可以进行结构化日志记录吗?如果没有,是否有一个“主流”解决方案(例如numpy / scipy是科学计算的主流解决方案)?我发现了structlog,但我不确定它有多广泛。

3 个答案:

答案 0 :(得分:4)

您是否看过python docs site section describing Implementing structured logging解释如何将python内置记录器用于结构化日志记录?

以下是上面网站上列出的一个简单示例。

import json
import logging

class StructuredMessage(object):
    def __init__(self, message, **kwargs):
        self.message = message
        self.kwargs = kwargs

    def __str__(self):
        return '%s >>> %s' % (self.message, json.dumps(self.kwargs))

m = StructuredMessage   # optional, to improve readability

logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(m('message 1', foo='bar', bar='baz', num=123, fnum=123.456))

导致以下日志。

message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}

希望这有帮助。

答案 1 :(得分:1)

如果您安装python-json-logger(288星,70叉)并拥有如下所示的日志配置(YAML),您将获得结构化日志文件。

version: 1
formatters:
    detailed:
        class: logging.Formatter
        format: '[%(asctime)s]:[%(levelname)s]: %(message)s'
    json:
        class: pythonjsonlogger.jsonlogger.JsonFormatter
        format: '%(asctime)s %(levelname)s %(message)s'
handlers:
    console:
        class: logging.StreamHandler
        level: INFO
        formatter: detailed
    file:
        class: logging.FileHandler
        filename: logfile.log
        level: DEBUG
        formatter: json
root:
    level: DEBUG
    handlers:
        - console
        - file

例外

您可能还希望使例外/回溯使用结构化格式。

请参阅Can I make Python output exceptions in one line / via logging?

答案 2 :(得分:0)

py3.2 开始,可以使用标准库执行此操作,无需外部依赖项:

from datetime import datetime
import json
import logging
import traceback


APP_NAME = 'hello world json logging'
APP_VERSION = 'git rev-parse HEAD'
LOG_LEVEL = logging._nameToLevel['INFO']


class JsonEncoderStrFallback(json.JSONEncoder):
  def default(self, obj):
    try:
      return super().default(obj)
    except TypeError as exc:
      if 'not JSON serializable' in str(exc):
        return str(obj)
      raise


class JsonEncoderDatetime(JsonEncoderStrFallback):
  def default(self, obj):
    if isinstance(obj, datetime):
      return obj.strftime('%Y-%m-%dT%H:%M:%S%z')
    else:
      return super().default(obj)


logging.basicConfig(
  format='%(json_formatted)s',
  level=LOG_LEVEL,
  handlers=[
    # if you wish to also log to a file -- logging.FileHandler(log_file_path, 'a'),
    logging.StreamHandler(sys.stdout),
  ],
)


_record_factory_bak = logging.getLogRecordFactory()
def record_factory(*args, **kwargs) -> logging.LogRecord:
  record = _record_factory_bak(*args, **kwargs)
  
  record.json_formatted = json.dumps(
    {
      'level': record.levelname,
      'unixtime': record.created,
      'thread': record.thread,
      'location': '{}:{}:{}'.format(
        record.pathname or record.filename,
        record.funcName,
        record.lineno,
      ),
      'exception': record.exc_info,
      'traceback': traceback.format_exception(*record.exc_info) if record.exc_info else None,
      'app': {
        'name': APP_NAME,
        'releaseId': APP_VERSION,
        'message': record.getMessage(),
      },
    },
    cls=JsonEncoderDatetime,
  )
  return record
logging.setLogRecordFactory(record_factory)

调用 logging.info('HELLO %s', 'WORLD') ...

... 结果为 {"level": "INFO", "unixtime": 1623532882.421775, "thread": 4660305408, "location": "<ipython-input-3-abe3276ceab4>:<module>:1", "exception": null, "traceback": null, "app": {"name": "hello world json logging", "releaseId": "git rev-parse HEAD", "message": "HELLO WORLD"}}